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IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WISCONSIN

WILLIAM WHITFORD, ROGER ANCLAM, )
EMILY BUNTING, MARY LYNNE DONOHUE, )
HELEN HARRIS, WAYNE JENSEN, )
WENDY SUE JOHNSON, JANET MITCHELL, ) No. 15-cv-421-bbc
ALLISON SEATON, JAMES SEATON, )
JEROME WALLACE, and DONALD WINTER, )

)
Plaintiffs, )

)
v. )

)
GERALD C. NICHOL, THOMAS BARLAND, )
JOHN FRANKE, HAROLD V. FROEHLICH, )
KEVIN J. KENNEDY, ELSA LAMELAS, and )
TIMOTHY VOCKE, )

)
Defendants. )

______________________________________________________________________________

DECLARATION OF ANNABELLE ELIZABETH HARLESS
______________________________________________________________________________

I, Annabelle Elizabeth Harless, pursuant to 28 U.S.C. § 1746, hereby declare as follows:

1. I am one the attorneys representing Plaintiffs in the above captioned action. I 

make this declaration based upon my personal knowledge and in support of the Plaintiffs’ 

Motion in Limine to Exclude the Testimony of Sean P. Trende. 

2. Attached as Exhibit A is a true and correct copy of the article D.M. Smith & W.N. 

Venables, An Introduction to R (2015).

3. Attached as Exhibit B is a true and correct copy of a computation file relied on by 

defense expert Sean P. Trende to produce his declaration, entitled 

“Wisconsin_clustering_computation.R”
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4. Attached as Exhibit C is a true and correct copy of the article Andrew Gelman & 

Gary King, A Unified Method of Evaluating Electoral Systems and Redistricting Plans, 38 Am. 

J. Pol. Sci. 514 (1994).

5. Attached as Exhibit D is a true and correct copy of the article John N. Friedman & 

Richard T. Holden, Optimal Gerrymandering: Sometimes Pack, but Never Crack, 98 Am. Econ. 

Rev. 113 (2008).

6. Attached as Exhibit E is a true and correct copy of the article Luc Anselin, Local 

Indicators of Spatial Association – LISA, 27 Geographical Analysis 93 (1995).

7. Attached as Exhibit F is a true and correct copy of the article Wendy K. Tam Cho, 

Contagion Effects and Ethnic Contribution Networks, 47 Am. J. Pol. Sci. 368 (2003).

8. Attached as Exhibit G is a true and correct copy of the article Sean F. Reardon & 

David O’Sullivan, Measures of Spatial Segregation, 34 Soc. Methodology 121 (2004).

9. Attached as Exhibit H is a true and correct copy of the article Nancy A. Denton & 

Douglas S. Massey, Hypersegregation in U.S. Metropolitan Areas: Black and Hispanic 

Segregation Along Five Dimensions, 26 Demography 373 (1989).

I declare under penalty of perjury that the foregoing is true and correct.

Dated this 26th day of January, 2016.

/s/ Annabelle Harless

ANNABELLE E. HARLESS
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Preface 1

Preface

This introduction to R is derived from an original set of notes describing the S and S-Plus
environments written in 1990–2 by Bill Venables and David M. Smith when at the University
of Adelaide. We have made a number of small changes to reflect differences between the R and
S programs, and expanded some of the material.

We would like to extend warm thanks to Bill Venables (and David Smith) for granting
permission to distribute this modified version of the notes in this way, and for being a supporter
of R from way back.

Comments and corrections are always welcome. Please address email correspondence to
R-core@R-project.org.

Suggestions to the reader

Most R novices will start with the introductory session in Appendix A. This should give some
familiarity with the style of R sessions and more importantly some instant feedback on what
actually happens.

Many users will come to R mainly for its graphical facilities. See Chapter 12 [Graphics],
page 63, which can be read at almost any time and need not wait until all the preceding sections
have been digested.

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 7 of 105

mailto:R-core@R-project.org


Chapter 1: Introduction and preliminaries 2

1 Introduction and preliminaries

1.1 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. Among other things it has

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either directly at the computer or on hard-
copy, and

• a well developed, simple and effective programming language (called ‘S’) which includes
conditionals, loops, user defined recursive functions and input and output facilities. (Indeed
most of the system supplied functions are themselves written in the S language.)

The term “environment” is intended to characterize it as a fully planned and coherent system,
rather than an incremental accretion of very specific and inflexible tools, as is frequently the
case with other data analysis software.

R is very much a vehicle for newly developing methods of interactive data analysis. It has
developed rapidly, and has been extended by a large collection of packages. However, most
programs written in R are essentially ephemeral, written for a single piece of data analysis.

1.2 Related software and documentation

R can be regarded as an implementation of the S language which was developed at Bell Labora-
tories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-Plus
systems.

The evolution of the S language is characterized by four books by John Chambers and
coauthors. For R, the basic reference is The New S Language: A Programming Environment
for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks.
The new features of the 1991 release of S are covered in Statistical Models in S edited by John
M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are
based on those described in Programming with Data by John M. Chambers. See Appendix F
[References], page 99, for precise references.

There are now a number of books which describe how to use R for data analysis and statistics,
and documentation for S/S-Plus can typically be used with R, keeping the differences between
the S implementations in mind. See Section “What documentation exists for R?” in The R
statistical system FAQ.

1.3 R and statistics

Our introduction to the R environment did not mention statistics, yet many people use R as a
statistics system. We prefer to think of it of an environment within which many classical and
modern statistical techniques have been implemented. A few of these are built into the base R
environment, but many are supplied as packages. There are about 25 packages supplied with
R (called “standard” and “recommended” packages) and many more are available through the
CRAN family of Internet sites (via https://CRAN.R-project.org) and elsewhere. More details
on packages are given later (see Chapter 13 [Packages], page 77).

Most classical statistics and much of the latest methodology is available for use with R, but
users may need to be prepared to do a little work to find it.
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Chapter 1: Introduction and preliminaries 3

There is an important difference in philosophy between S (and hence R) and the other
main statistical systems. In S a statistical analysis is normally done as a series of steps, with
intermediate results being stored in objects. Thus whereas SAS and SPSS will give copious
output from a regression or discriminant analysis, R will give minimal output and store the
results in a fit object for subsequent interrogation by further R functions.

1.4 R and the window system

The most convenient way to use R is at a graphics workstation running a windowing system.
This guide is aimed at users who have this facility. In particular we will occasionally refer to
the use of R on an X window system although the vast bulk of what is said applies generally to
any implementation of the R environment.

Most users will find it necessary to interact directly with the operating system on their
computer from time to time. In this guide, we mainly discuss interaction with the operating
system on UNIX machines. If you are running R under Windows or OS X you will need to make
some small adjustments.

Setting up a workstation to take full advantage of the customizable features of R is a straight-
forward if somewhat tedious procedure, and will not be considered further here. Users in diffi-
culty should seek local expert help.

1.5 Using R interactively

When you use the R program it issues a prompt when it expects input commands. The default
prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it may appear that
nothing is happening. However, as we shall see, it is easy to change to a different R prompt if
you wish. We will assume that the UNIX shell prompt is ‘$’.

In using R under UNIX the suggested procedure for the first occasion is as follows:

1. Create a separate sub-directory, say work, to hold data files on which you will use R for
this problem. This will be the working directory whenever you use R for this particular
problem.

$ mkdir work

$ cd work

2. Start the R program with the command

$ R

3. At this point R commands may be issued (see later).

4. To quit the R program the command is

> q()

At this point you will be asked whether you want to save the data from your R session. On
some systems this will bring up a dialog box, and on others you will receive a text prompt
to which you can respond yes, no or cancel (a single letter abbreviation will do) to save
the data before quitting, quit without saving, or return to the R session. Data which is
saved will be available in future R sessions.

Further R sessions are simple.

1. Make work the working directory and start the program as before:

$ cd work

$ R

2. Use the R program, terminating with the q() command at the end of the session.

To use R under Windows the procedure to follow is basically the same. Create a folder as
the working directory, and set that in the Start In field in your R shortcut. Then launch R by
double clicking on the icon.

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 9 of 105



Chapter 1: Introduction and preliminaries 4

1.6 An introductory session

Readers wishing to get a feel for R at a computer before proceeding are strongly advised to work
through the introductory session given in Appendix A [A sample session], page 82.

1.7 Getting help with functions and features

R has an inbuilt help facility similar to the man facility of UNIX. To get more information on
any specific named function, for example solve, the command is

> help(solve)

An alternative is

> ?solve

For a feature specified by special characters, the argument must be enclosed in double or single
quotes, making it a “character string”: This is also necessary for a few words with syntactic
meaning including if, for and function.

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It’s

important". Our convention is to use double quote marks for preference.

On most R installations help is available in HTML format by running

> help.start()

which will launch a Web browser that allows the help pages to be browsed with hyperlinks. On
UNIX, subsequent help requests are sent to the HTML-based help system. The ‘Search Engine
and Keywords’ link in the page loaded by help.start() is particularly useful as it is contains
a high-level concept list which searches though available functions. It can be a great way to get
your bearings quickly and to understand the breadth of what R has to offer.

The help.search command (alternatively ??) allows searching for help in various ways. For
example,

> ??solve

Try ?help.search for details and more examples.

The examples on a help topic can normally be run by

> example(topic)

Windows versions of R have other optional help systems: use

> ?help

for further details.

1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive as are most
UNIX based packages, so A and a are different symbols and would refer to different variables.
The set of symbols which can be used in R names depends on the operating system and country
within which R is being run (technically on the locale in use). Normally all alphanumeric
symbols are allowed1 (and in some countries this includes accented letters) plus ‘.’ and ‘_’, with
the restriction that a name must start with ‘.’ or a letter, and if it starts with ‘.’ the second
character must not be a digit. Names are effectively unlimited in length.

Elementary commands consist of either expressions or assignments. If an expression is given
as a command, it is evaluated, printed (unless specifically made invisible), and the value is lost.
An assignment also evaluates an expression and passes the value to a variable but the result is
not automatically printed.

1 For portable R code (including that to be used in R packages) only A–Za–z0–9 should be used.
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Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary commands
can be grouped together into one compound expression by braces (‘{’ and ‘}’). Comments can
be put almost2 anywhere, starting with a hashmark (‘#’), everything to the end of the line is a
comment.

If a command is not complete at the end of a line, R will give a different prompt, by default

+

on second and subsequent lines and continue to read input until the command is syntactically
complete. This prompt may be changed by the user. We will generally omit the continuation
prompt and indicate continuation by simple indenting.

Command lines entered at the console are limited3 to about 4095 bytes (not characters).

1.9 Recall and correction of previous commands

Under many versions of UNIX and on Windows, R provides a mechanism for recalling and re-
executing previous commands. The vertical arrow keys on the keyboard can be used to scroll
forward and backward through a command history. Once a command is located in this way, the
cursor can be moved within the command using the horizontal arrow keys, and characters can
be removed with the DEL key or added with the other keys. More details are provided later: see
Appendix C [The command-line editor], page 92.

The recall and editing capabilities under UNIX are highly customizable. You can find out
how to do this by reading the manual entry for the readline library.

Alternatively, the Emacs text editor provides more general support mechanisms (via ESS,
Emacs Speaks Statistics) for working interactively with R. See Section “R and Emacs” in The
R statistical system FAQ.

1.10 Executing commands from or diverting output to a file

If commands4 are stored in an external file, say commands.R in the working directory work, they
may be executed at any time in an R session with the command

> source("commands.R")

For Windows Source is also available on the File menu. The function sink,

> sink("record.lis")

will divert all subsequent output from the console to an external file, record.lis. The command

> sink()

restores it to the console once again.

1.11 Data permanency and removing objects

The entities that R creates and manipulates are known as objects. These may be variables, arrays
of numbers, character strings, functions, or more general structures built from such components.

During an R session, objects are created and stored by name (we discuss this process in the
next session). The R command

> objects()

(alternatively, ls()) can be used to display the names of (most of) the objects which are currently
stored within R. The collection of objects currently stored is called the workspace.

To remove objects the function rm is available:

2 not inside strings, nor within the argument list of a function definition
3 some of the consoles will not allow you to enter more, and amongst those which do some will silently discard

the excess and some will use it as the start of the next line.
4 of unlimited length.
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> rm(x, y, z, ink, junk, temp, foo, bar)

All objects created during an R session can be stored permanently in a file for use in future
R sessions. At the end of each R session you are given the opportunity to save all the currently
available objects. If you indicate that you want to do this, the objects are written to a file called
.RData5 in the current directory, and the command lines used in the session are saved to a file
called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from this
file. At the same time the associated commands history is reloaded.

It is recommended that you should use separate working directories for analyses conducted
with R. It is quite common for objects with names x and y to be created during an analysis.
Names like this are often meaningful in the context of a single analysis, but it can be quite
hard to decide what they might be when the several analyses have been conducted in the same
directory.

5 The leading “dot” in this file name makes it invisible in normal file listings in UNIX, and in default GUI file
listings on OS X and Windows.
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2 Simple manipulations; numbers and vectors

2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector, which
is a single entity consisting of an ordered collection of numbers. To set up a vector named x,
say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c() which in this context can take an
arbitrary number of vector arguments and whose value is a vector got by concatenating its
arguments end to end.1

A number occurring by itself in an expression is taken as a vector of length one.

Notice that the assignment operator (‘<-’), which consists of the two characters ‘<’ (“less
than”) and ‘-’ (“minus”) occurring strictly side-by-side and it ‘points’ to the object receiving
the value of the expression. In most contexts the ‘=’ operator can be used as an alternative.

Assignment can also be made using the function assign(). An equivalent way of making
the same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))

The usual operator, <-, can be thought of as a syntactic short-cut to this.

Assignments can also be made in the other direction, using the obvious change in the assign-
ment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed and lost2. So now if we
were to use the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and the value of x, of course,
unchanged).

The further assignment

> y <- c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle
place.

2.2 Vector arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed element
by element. Vectors occurring in the same expression need not all be of the same length. If
they are not, the value of the expression is a vector with the same length as the longest vector
which occurs in the expression. Shorter vectors in the expression are recycled as often as need be
(perhaps fractionally) until they match the length of the longest vector. In particular a constant
is simply repeated. So with the above assignments the command

> v <- 2*x + y + 1

generates a new vector v of length 11 constructed by adding together, element by element, 2*x
repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

1 With other than vector types of argument, such as list mode arguments, the action of c() is rather different.
See Section 6.2.1 [Concatenating lists], page 27.

2 Actually, it is still available as .Last.value before any other statements are executed.
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The elementary arithmetic operators are the usual +, -, *, / and ^ for raising to a power. In
addition all of the common arithmetic functions are available. log, exp, sin, cos, tan, sqrt,
and so on, all have their usual meaning. max and min select the largest and smallest elements of a
vector respectively. range is a function whose value is a vector of length two, namely c(min(x),

max(x)). length(x) is the number of elements in x, sum(x) gives the total of the elements in
x, and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample mean, which is the same
as sum(x)/length(x), and var(x) which gives

sum((x-mean(x))^2)/(length(x)-1)

or sample variance. If the argument to var() is an n-by-p matrix the value is a p-by-p sample
covariance matrix got by regarding the rows as independent p-variate sample vectors.

sort(x) returns a vector of the same size as x with the elements arranged in increasing order;
however there are other more flexible sorting facilities available (see order() or sort.list()
which produce a permutation to do the sorting).

Note that max and min select the largest and smallest values in their arguments, even if they
are given several vectors. The parallel maximum and minimum functions pmax and pmin return
a vector (of length equal to their longest argument) that contains in each element the largest
(smallest) element in that position in any of the input vectors.

For most purposes the user will not be concerned if the “numbers” in a numeric vector
are integers, reals or even complex. Internally calculations are done as double precision real
numbers, or double precision complex numbers if the input data are complex.

To work with complex numbers, supply an explicit complex part. Thus

sqrt(-17)

will give NaN and a warning, but

sqrt(-17+0i)

will do the computations as complex numbers.

2.3 Generating regular sequences

R has a number of facilities for generating commonly used sequences of numbers. For example
1:30 is the vector c(1, 2, ..., 29, 30). The colon operator has high priority within an ex-
pression, so, for example 2*1:15 is the vector c(2, 4, ..., 28, 30). Put n <- 10 and compare
the sequences 1:n-1 and 1:(n-1).

The construction 30:1 may be used to generate a sequence backwards.

The function seq() is a more general facility for generating sequences. It has five arguments,
only some of which may be specified in any one call. The first two arguments, if given, specify
the beginning and end of the sequence, and if these are the only two arguments given the result
is the same as the colon operator. That is seq(2,10) is the same vector as 2:10.

Arguments to seq(), and to many other R functions, can also be given in named form, in
which case the order in which they appear is irrelevant. The first two arguments may be named
from=value and to=value; thus seq(1,30), seq(from=1, to=30) and seq(to=30, from=1)

are all the same as 1:30. The next two arguments to seq() may be named by=value and
length=value, which specify a step size and a length for the sequence respectively. If neither
of these is given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generates in s3 the vector c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0). Similarly
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> s4 <- seq(length=51, from=-5, by=.2)

generates the same vector in s4.

The fifth argument may be named along=vector, which is normally used as the only argu-
ment to create the sequence 1, 2, ..., length(vector), or the empty sequence if the vector
is empty (as it can be).

A related function is rep() which can be used for replicating an object in various complicated
ways. The simplest form is

> s5 <- rep(x, times=5)

which will put five copies of x end-to-end in s5. Another useful version is

> s6 <- rep(x, each=5)

which repeats each element of x five times before moving on to the next.

2.4 Logical vectors

As well as numerical vectors, R allows manipulation of logical quantities. The elements of a
logical vector can have the values TRUE, FALSE, and NA (for “not available”, see below). The
first two are often abbreviated as T and F, respectively. Note however that T and F are just
variables which are set to TRUE and FALSE by default, but are not reserved words and hence can
be overwritten by the user. Hence, you should always use TRUE and FALSE.

Logical vectors are generated by conditions. For example

> temp <- x > 13

sets temp as a vector of the same length as x with values FALSE corresponding to elements of x
where the condition is not met and TRUE where it is.

The logical operators are <, <=, >, >=, == for exact equality and != for inequality. In addition
if c1 and c2 are logical expressions, then c1 & c2 is their intersection (“and”), c1 | c2 is their
union (“or”), and !c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into
numeric vectors, FALSE becoming 0 and TRUE becoming 1. However there are situations where
logical vectors and their coerced numeric counterparts are not equivalent, for example see the
next subsection.

2.5 Missing values

In some cases the components of a vector may not be completely known. When an element
or value is “not available” or a “missing value” in the statistical sense, a place within a vector
may be reserved for it by assigning it the special value NA. In general any operation on an NA

becomes an NA. The motivation for this rule is simply that if the specification of an operation
is incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value TRUE if and
only if the corresponding element in x is NA.

> z <- c(1:3,NA); ind <- is.na(z)

Notice that the logical expression x == NA is quite different from is.na(x) since NA is not
really a value but a marker for a quantity that is not available. Thus x == NA is a vector of the
same length as x all of whose values are NA as the logical expression itself is incomplete and
hence undecidable.

Note that there is a second kind of “missing” values which are produced by numerical com-
putation, the so-called Not a Number, NaN, values. Examples are

> 0/0

or
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> Inf - Inf

which both give NaN since the result cannot be defined sensibly.

In summary, is.na(xx) is TRUE both for NA and NaN values. To differentiate these,
is.nan(xx) is only TRUE for NaNs.

Missing values are sometimes printed as <NA> when character vectors are printed without
quotes.

2.6 Character vectors

Character quantities and character vectors are used frequently in R, for example as plot labels.
Where needed they are denoted by a sequence of characters delimited by the double quote
character, e.g., "x-values", "New iteration results".

Character strings are entered using either matching double (") or single (’) quotes, but are
printed using double quotes (or sometimes without quotes). They use C-style escape sequences,
using \ as the escape character, so \\ is entered and printed as \\, and inside double quotes "
is entered as \". Other useful escape sequences are \n, newline, \t, tab and \b, backspace—see
?Quotes for a full list.

Character vectors may be concatenated into a vector by the c() function; examples of their
use will emerge frequently.

The paste() function takes an arbitrary number of arguments and concatenates them one by
one into character strings. Any numbers given among the arguments are coerced into character
strings in the evident way, that is, in the same way they would be if they were printed. The
arguments are by default separated in the result by a single blank character, but this can be
changed by the named argument, sep=string, which changes it to string, possibly empty.

For example

> labs <- paste(c("X","Y"), 1:10, sep="")

makes labs into the character vector

c("X1", "Y2", "X3", "Y4", "X5", "Y6", "X7", "Y8", "X9", "Y10")

Note particularly that recycling of short lists takes place here too; thus c("X", "Y") is
repeated 5 times to match the sequence 1:10.3

2.7 Index vectors; selecting and modifying subsets of a data set

Subsets of the elements of a vector may be selected by appending to the name of the vector an
index vector in square brackets. More generally any expression that evaluates to a vector may
have subsets of its elements similarly selected by appending an index vector in square brackets
immediately after the expression.

Such index vectors can be any of four distinct types.

1. A logical vector. In this case the index vector is recycled to the same length as the vector
from which elements are to be selected. Values corresponding to TRUE in the index vector
are selected and those corresponding to FALSE are omitted. For example

> y <- x[!is.na(x)]

creates (or re-creates) an object y which will contain the non-missing values of x, in the
same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[(!is.na(x)) & x>0] -> z

creates an object z and places in it the values of the vector x+1 for which the corresponding
value in x was both non-missing and positive.

3 paste(..., collapse=ss) joins the arguments into a single character string putting ss in between, e.g., ss
<- "|". There are more tools for character manipulation, see the help for sub and substring.
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2. A vector of positive integral quantities. In this case the values in the index vector must lie
in the set {1, 2, . . . , length(x)}. The corresponding elements of the vector are selected and
concatenated, in that order, in the result. The index vector can be of any length and the
result is of the same length as the index vector. For example x[6] is the sixth component
of x and

> x[1:10]

selects the first 10 elements of x (assuming length(x) is not less than 10). Also

> c("x","y")[rep(c(1,2,2,1), times=4)]

(an admittedly unlikely thing to do) produces a character vector of length 16 consisting of
"x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. Such an index vector specifies the values to be
excluded rather than included. Thus

> y <- x[-(1:5)]

gives y all but the first five elements of x.

4. A vector of character strings. This possibility only applies where an object has a names

attribute to identify its components. In this case a sub-vector of the names vector may be
used in the same way as the positive integral labels in item 2 further above.

> fruit <- c(5, 10, 1, 20)

> names(fruit) <- c("orange", "banana", "apple", "peach")

> lunch <- fruit[c("apple","orange")]

The advantage is that alphanumeric names are often easier to remember than numeric
indices. This option is particularly useful in connection with data frames, as we shall see
later.

An indexed expression can also appear on the receiving end of an assignment, in which case
the assignment operation is performed only on those elements of the vector. The expression
must be of the form vector[index_vector] as having an arbitrary expression in place of the
vector name does not make much sense here.

For example

> x[is.na(x)] <- 0

replaces any missing values in x by zeros and

> y[y < 0] <- -y[y < 0]

has the same effect as

> y <- abs(y)

2.8 Other types of objects

Vectors are the most important type of object in R, but there are several others which we will
meet more formally in later sections.

• matrices or more generally arrays are multi-dimensional generalizations of vectors. In fact,
they are vectors that can be indexed by two or more indices and will be printed in special
ways. See Chapter 5 [Arrays and matrices], page 18.

• factors provide compact ways to handle categorical data. See Chapter 4 [Factors], page 16.

• lists are a general form of vector in which the various elements need not be of the same
type, and are often themselves vectors or lists. Lists provide a convenient way to return the
results of a statistical computation. See Section 6.1 [Lists], page 26.

• data frames are matrix-like structures, in which the columns can be of different types. Think
of data frames as ‘data matrices’ with one row per observational unit but with (possibly)
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both numerical and categorical variables. Many experiments are best described by data
frames: the treatments are categorical but the response is numeric. See Section 6.3 [Data
frames], page 27.

• functions are themselves objects in R which can be stored in the project’s workspace. This
provides a simple and convenient way to extend R. See Chapter 10 [Writing your own
functions], page 42.
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3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length

The entities R operates on are technically known as objects. Examples are vectors of numeric
(real) or complex values, vectors of logical values and vectors of character strings. These are
known as “atomic” structures since their components are all of the same type, or mode, namely
numeric1, complex, logical, character and raw.

Vectors must have their values all of the same mode. Thus any given vector must be un-
ambiguously either logical, numeric, complex, character or raw. (The only apparent exception
to this rule is the special “value” listed as NA for quantities not available, but in fact there are
several types of NA). Note that a vector can be empty and still have a mode. For example
the empty character string vector is listed as character(0) and the empty numeric vector as
numeric(0).

R also operates on objects called lists, which are of mode list. These are ordered sequences
of objects which individually can be of any mode. lists are known as “recursive” rather than
atomic structures since their components can themselves be lists in their own right.

The other recursive structures are those of mode function and expression. Functions are
the objects that form part of the R system along with similar user written functions, which we
discuss in some detail later. Expressions as objects form an advanced part of R which will not
be discussed in this guide, except indirectly when we discuss formulae used with modeling in R.

By the mode of an object we mean the basic type of its fundamental constituents. This is a
special case of a “property” of an object. Another property of every object is its length. The
functions mode(object) and length(object) can be used to find out the mode and length of
any defined structure2.

Further properties of an object are usually provided by attributes(object), see Section 3.3
[Getting and setting attributes], page 14. Because of this, mode and length are also called
“intrinsic attributes” of an object.

For example, if z is a complex vector of length 100, then in an expression mode(z) is the
character string "complex" and length(z) is 100.

R caters for changes of mode almost anywhere it could be considered sensible to do so, (and
a few where it might not be). For example with

> z <- 0:9

we could put

> digits <- as.character(z)

after which digits is the character vector c("0", "1", "2", ..., "9"). A further coercion, or
change of mode, reconstructs the numerical vector again:

> d <- as.integer(digits)

Now d and z are the same.3 There is a large collection of functions of the form as.something()

for either coercion from one mode to another, or for investing an object with some other attribute
it may not already possess. The reader should consult the different help files to become familiar
with them.

1 numeric mode is actually an amalgam of two distinct modes, namely integer and double precision, as explained
in the manual.

2 Note however that length(object) does not always contain intrinsic useful information, e.g., when object is
a function.

3 In general, coercion from numeric to character and back again will not be exactly reversible, because of
roundoff errors in the character representation.
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3.2 Changing the length of an object

An “empty” object may still have a mode. For example

> e <- numeric()

makes e an empty vector structure of mode numeric. Similarly character() is a empty character
vector, and so on. Once an object of any size has been created, new components may be added
to it simply by giving it an index value outside its previous range. Thus

> e[3] <- 17

now makes e a vector of length 3, (the first two components of which are at this point both NA).
This applies to any structure at all, provided the mode of the additional component(s) agrees
with the mode of the object in the first place.

This automatic adjustment of lengths of an object is used often, for example in the scan()

function for input. (see Section 7.2 [The scan() function], page 31.)

Conversely to truncate the size of an object requires only an assignment to do so. Hence if
alpha is an object of length 10, then

> alpha <- alpha[2 * 1:5]

makes it an object of length 5 consisting of just the former components with even index. (The
old indices are not retained, of course.) We can then retain just the first three values by

> length(alpha) <- 3

and vectors can be extended (by missing values) in the same way.

3.3 Getting and setting attributes

The function attributes(object) returns a list of all the non-intrinsic attributes currently
defined for that object. The function attr(object, name) can be used to select a specific
attribute. These functions are rarely used, except in rather special circumstances when some
new attribute is being created for some particular purpose, for example to associate a creation
date or an operator with an R object. The concept, however, is very important.

Some care should be exercised when assigning or deleting attributes since they are an integral
part of the object system used in R.

When it is used on the left hand side of an assignment it can be used either to associate a
new attribute with object or to change an existing one. For example

> attr(z, "dim") <- c(10,10)

allows R to treat z as if it were a 10-by-10 matrix.

3.4 The class of an object

All objects in R have a class, reported by the function class. For simple vectors this is just the
mode, for example "numeric", "logical", "character" or "list", but "matrix", "array",
"factor" and "data.frame" are other possible values.

A special attribute known as the class of the object is used to allow for an object-oriented
style4 of programming in R. For example if an object has class "data.frame", it will be printed
in a certain way, the plot() function will display it graphically in a certain way, and other
so-called generic functions such as summary() will react to it as an argument in a way sensitive
to its class.

To remove temporarily the effects of class, use the function unclass(). For example if winter
has the class "data.frame" then

4 A different style using ‘formal’ or ‘S4’ classes is provided in package methods.
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> winter

will print it in data frame form, which is rather like a matrix, whereas

> unclass(winter)

will print it as an ordinary list. Only in rather special situations do you need to use this facility,
but one is when you are learning to come to terms with the idea of class and generic functions.

Generic functions and classes will be discussed further in Section 10.9 [Object orientation],
page 49, but only briefly.
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4 Ordered and unordered factors

A factor is a vector object used to specify a discrete classification (grouping) of the components
of other vectors of the same length. R provides both ordered and unordered factors. While the
“real” application of factors is with model formulae (see Section 11.1.1 [Contrasts], page 53), we
here look at a specific example.

4.1 A specific example

Suppose, for example, we have a sample of 30 tax accountants from all the states and territories
of Australia1 and their individual state of origin is specified by a character vector of state
mnemonics as

> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",

"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",

"sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",

"sa", "act", "nsw", "vic", "vic", "act")

Notice that in the case of a character vector, “sorted” means sorted in alphabetical order.

A factor is similarly created using the factor() function:

> statef <- factor(state)

The print() function handles factors slightly differently from other objects:

> statef

[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa

[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act

Levels: act nsw nt qld sa tas vic wa

To find out the levels of a factor the function levels() can be used.

> levels(statef)

[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"

4.2 The function tapply() and ragged arrays

To continue the previous example, suppose we have the incomes of the same tax accountants in
another vector (in suitably large units of money)

> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,

61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,

59, 46, 58, 43)

To calculate the sample mean income for each state we can now use the special function
tapply():

> incmeans <- tapply(incomes, statef, mean)

giving a means vector with the components labelled by the levels

act nsw nt qld sa tas vic wa

44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250

The function tapply() is used to apply a function, here mean(), to each group of components
of the first argument, here incomes, defined by the levels of the second component, here statef2,

1 Readers should note that there are eight states and territories in Australia, namely the Australian Capital
Territory, New South Wales, the Northern Territory, Queensland, South Australia, Tasmania, Victoria and
Western Australia.

2 Note that tapply() also works in this case when its second argument is not a factor, e.g., ‘tapply(incomes,
state)’, and this is true for quite a few other functions, since arguments are coerced to factors when necessary
(using as.factor()).
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as if they were separate vector structures. The result is a structure of the same length as the
levels attribute of the factor containing the results. The reader should consult the help document
for more details.

Suppose further we needed to calculate the standard errors of the state income means. To do
this we need to write an R function to calculate the standard error for any given vector. Since
there is an builtin function var() to calculate the sample variance, such a function is a very
simple one liner, specified by the assignment:

> stderr <- function(x) sqrt(var(x)/length(x))

(Writing functions will be considered later in Chapter 10 [Writing your own functions], page 42,
and in this case was unnecessary as R also has a builtin function sd().) After this assignment,
the standard errors are calculated by

> incster <- tapply(incomes, statef, stderr)

and the values calculated are then

> incster

act nsw nt qld sa tas vic wa

1.5 4.3102 4.5 4.1061 2.7386 0.5 5.244 2.6575

As an exercise you may care to find the usual 95% confidence limits for the state mean
incomes. To do this you could use tapply() once more with the length() function to find
the sample sizes, and the qt() function to find the percentage points of the appropriate t-
distributions. (You could also investigate R’s facilities for t-tests.)

The function tapply() can also be used to handle more complicated indexing of a vector
by multiple categories. For example, we might wish to split the tax accountants by both state
and sex. However in this simple instance (just one factor) what happens can be thought of as
follows. The values in the vector are collected into groups corresponding to the distinct entries
in the factor. The function is then applied to each of these groups individually. The value is a
vector of function results, labelled by the levels attribute of the factor.

The combination of a vector and a labelling factor is an example of what is sometimes called
a ragged array, since the subclass sizes are possibly irregular. When the subclass sizes are all
the same the indexing may be done implicitly and much more efficiently, as we see in the next
section.

4.3 Ordered factors

The levels of factors are stored in alphabetical order, or in the order they were specified to
factor if they were specified explicitly.

Sometimes the levels will have a natural ordering that we want to record and want our
statistical analysis to make use of. The ordered() function creates such ordered factors but
is otherwise identical to factor. For most purposes the only difference between ordered and
unordered factors is that the former are printed showing the ordering of the levels, but the
contrasts generated for them in fitting linear models are different.

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 23 of 105



Chapter 5: Arrays and matrices 18

5 Arrays and matrices

5.1 Arrays

An array can be considered as a multiply subscripted collection of data entries, for example
numeric. R allows simple facilities for creating and handling arrays, and in particular the
special case of matrices.

A dimension vector is a vector of non-negative integers. If its length is k then the array is
k-dimensional, e.g. a matrix is a 2-dimensional array. The dimensions are indexed from one up
to the values given in the dimension vector.

A vector can be used by R as an array only if it has a dimension vector as its dim attribute.
Suppose, for example, z is a vector of 1500 elements. The assignment

> dim(z) <- c(3,5,100)

gives it the dim attribute that allows it to be treated as a 3 by 5 by 100 array.

Other functions such as matrix() and array() are available for simpler and more natural
looking assignments, as we shall see in Section 5.4 [The array() function], page 20.

The values in the data vector give the values in the array in the same order as they would
occur in FORTRAN, that is “column major order,” with the first subscript moving fastest and
the last subscript slowest.

For example if the dimension vector for an array, say a, is c(3,4,2) then there are 3× 4×
2 = 24 entries in a and the data vector holds them in the order a[1,1,1], a[2,1,1], ...,

a[2,4,2], a[3,4,2].

Arrays can be one-dimensional: such arrays are usually treated in the same way as vectors
(including when printing), but the exceptions can cause confusion.

5.2 Array indexing. Subsections of an array

Individual elements of an array may be referenced by giving the name of the array followed by
the subscripts in square brackets, separated by commas.

More generally, subsections of an array may be specified by giving a sequence of index vectors
in place of subscripts; however if any index position is given an empty index vector, then the full
range of that subscript is taken.

Continuing the previous example, a[2,,] is a 4× 2 array with dimension vector c(4,2) and
data vector containing the values

c(a[2,1,1], a[2,2,1], a[2,3,1], a[2,4,1],

a[2,1,2], a[2,2,2], a[2,3,2], a[2,4,2])

in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts
entirely and using a alone.

For any array, say Z, the dimension vector may be referenced explicitly as dim(Z) (on either
side of an assignment).

Also, if an array name is given with just one subscript or index vector, then the corresponding
values of the data vector only are used; in this case the dimension vector is ignored. This is not
the case, however, if the single index is not a vector but itself an array, as we next discuss.
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5.3 Index matrices

As well as an index vector in any subscript position, a matrix may be used with a single index
matrix in order either to assign a vector of quantities to an irregular collection of elements in
the array, or to extract an irregular collection as a vector.

A matrix example makes the process clear. In the case of a doubly indexed array, an index
matrix may be given consisting of two columns and as many rows as desired. The entries in the
index matrix are the row and column indices for the doubly indexed array. Suppose for example
we have a 4 by 5 array X and we wish to do the following:

• Extract elements X[1,3], X[2,2] and X[3,1] as a vector structure, and

• Replace these entries in the array X by zeroes.

In this case we need a 3 by 2 subscript array, as in the following example.

> x <- array(1:20, dim=c(4,5)) # Generate a 4 by 5 array.
> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17

[2,] 2 6 10 14 18

[3,] 3 7 11 15 19

[4,] 4 8 12 16 20

> i <- array(c(1:3,3:1), dim=c(3,2))

> i # i is a 3 by 2 index array.
[,1] [,2]

[1,] 1 3

[2,] 2 2

[3,] 3 1

> x[i] # Extract those elements
[1] 9 6 3

> x[i] <- 0 # Replace those elements by zeros.
> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 0 13 17

[2,] 2 0 10 14 18

[3,] 0 7 11 15 19

[4,] 4 8 12 16 20

>

Negative indices are not allowed in index matrices. NA and zero values are allowed: rows in the
index matrix containing a zero are ignored, and rows containing an NA produce an NA in the
result.

As a less trivial example, suppose we wish to generate an (unreduced) design matrix for a
block design defined by factors blocks (b levels) and varieties (v levels). Further suppose
there are n plots in the experiment. We could proceed as follows:

> Xb <- matrix(0, n, b)

> Xv <- matrix(0, n, v)

> ib <- cbind(1:n, blocks)

> iv <- cbind(1:n, varieties)

> Xb[ib] <- 1

> Xv[iv] <- 1

> X <- cbind(Xb, Xv)

To construct the incidence matrix, N say, we could use

> N <- crossprod(Xb, Xv)
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However a simpler direct way of producing this matrix is to use table():

> N <- table(blocks, varieties)

Index matrices must be numerical: any other form of matrix (e.g. a logical or character
matrix) supplied as a matrix is treated as an indexing vector.

5.4 The array() function

As well as giving a vector structure a dim attribute, arrays can be constructed from vectors by
the array function, which has the form

> Z <- array(data_vector, dim_vector)

For example, if the vector h contains 24 or fewer, numbers then the command

> Z <- array(h, dim=c(3,4,2))

would use h to set up 3 by 4 by 2 array in Z. If the size of h is exactly 24 the result is the same
as

> Z <- h ; dim(Z) <- c(3,4,2)

However if h is shorter than 24, its values are recycled from the beginning again to make it
up to size 24 (see Section 5.4.1 [The recycling rule], page 20) but dim(h) <- c(3,4,2) would
signal an error about mismatching length. As an extreme but common example

> Z <- array(0, c(3,4,2))

makes Z an array of all zeros.

At this point dim(Z) stands for the dimension vector c(3,4,2), and Z[1:24] stands for the
data vector as it was in h, and Z[] with an empty subscript or Z with no subscript stands for
the entire array as an array.

Arrays may be used in arithmetic expressions and the result is an array formed by element-
by-element operations on the data vector. The dim attributes of operands generally need to be
the same, and this becomes the dimension vector of the result. So if A, B and C are all similar
arrays, then

> D <- 2*A*B + C + 1

makes D a similar array with its data vector being the result of the given element-by-element
operations. However the precise rule concerning mixed array and vector calculations has to be
considered a little more carefully.

5.4.1 Mixed vector and array arithmetic. The recycling rule

The precise rule affecting element by element mixed calculations with vectors and arrays is
somewhat quirky and hard to find in the references. From experience we have found the following
to be a reliable guide.

• The expression is scanned from left to right.

• Any short vector operands are extended by recycling their values until they match the size
of any other operands.

• As long as short vectors and arrays only are encountered, the arrays must all have the same
dim attribute or an error results.

• Any vector operand longer than a matrix or array operand generates an error.

• If array structures are present and no error or coercion to vector has been precipitated, the
result is an array structure with the common dim attribute of its array operands.
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5.5 The outer product of two arrays

An important operation on arrays is the outer product. If a and b are two numeric arrays,
their outer product is an array whose dimension vector is obtained by concatenating their two
dimension vectors (order is important), and whose data vector is got by forming all possible
products of elements of the data vector of a with those of b. The outer product is formed by
the special operator %o%:

> ab <- a %o% b

An alternative is

> ab <- outer(a, b, "*")

The multiplication function can be replaced by an arbitrary function of two variables. For
example if we wished to evaluate the function f(x; y) = cos(y)/(1 + x2) over a regular grid of
values with x- and y-coordinates defined by the R vectors x and y respectively, we could proceed
as follows:

> f <- function(x, y) cos(y)/(1 + x^2)

> z <- outer(x, y, f)

In particular the outer product of two ordinary vectors is a doubly subscripted array (that
is a matrix, of rank at most 1). Notice that the outer product operator is of course non-
commutative. Defining your own R functions will be considered further in Chapter 10 [Writing
your own functions], page 42.

An example: Determinants of 2 by 2 single-digit matrices

As an artificial but cute example, consider the determinants of 2 by 2 matrices [a, b; c, d] where
each entry is a non-negative integer in the range 0, 1, . . . , 9, that is a digit.

The problem is to find the determinants, ad − bc, of all possible matrices of this form and
represent the frequency with which each value occurs as a high density plot. This amounts to
finding the probability distribution of the determinant if each digit is chosen independently and
uniformly at random.

A neat way of doing this uses the outer() function twice:

> d <- outer(0:9, 0:9)

> fr <- table(outer(d, d, "-"))

> plot(as.numeric(names(fr)), fr, type="h",

xlab="Determinant", ylab="Frequency")

Notice the coercion of the names attribute of the frequency table to numeric in order to
recover the range of the determinant values. The “obvious” way of doing this problem with for

loops, to be discussed in Chapter 9 [Loops and conditional execution], page 40, is so inefficient
as to be impractical.

It is also perhaps surprising that about 1 in 20 such matrices is singular.

5.6 Generalized transpose of an array

The function aperm(a, perm) may be used to permute an array, a. The argument perm must be
a permutation of the integers {1, . . . , k}, where k is the number of subscripts in a. The result of
the function is an array of the same size as a but with old dimension given by perm[j] becoming
the new j-th dimension. The easiest way to think of this operation is as a generalization of
transposition for matrices. Indeed if A is a matrix, (that is, a doubly subscripted array) then B

given by

> B <- aperm(A, c(2,1))

is just the transpose of A. For this special case a simpler function t() is available, so we could
have used B <- t(A).
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5.7 Matrix facilities

As noted above, a matrix is just an array with two subscripts. However it is such an important
special case it needs a separate discussion. R contains many operators and functions that are
available only for matrices. For example t(X) is the matrix transpose function, as noted above.
The functions nrow(A) and ncol(A) give the number of rows and columns in the matrix A

respectively.

5.7.1 Matrix multiplication

The operator %*% is used for matrix multiplication. An n by 1 or 1 by n matrix may of course
be used as an n-vector if in the context such is appropriate. Conversely, vectors which occur in
matrix multiplication expressions are automatically promoted either to row or column vectors,
whichever is multiplicatively coherent, if possible, (although this is not always unambiguously
possible, as we see later).

If, for example, A and B are square matrices of the same size, then

> A * B

is the matrix of element by element products and

> A %*% B

is the matrix product. If x is a vector, then

> x %*% A %*% x

is a quadratic form.1

The function crossprod() forms “crossproducts”, meaning that crossprod(X, y) is the
same as t(X) %*% y but the operation is more efficient. If the second argument to crossprod()

is omitted it is taken to be the same as the first.

The meaning of diag() depends on its argument. diag(v), where v is a vector, gives a
diagonal matrix with elements of the vector as the diagonal entries. On the other hand diag(M),
where M is a matrix, gives the vector of main diagonal entries of M. This is the same convention
as that used for diag() in Matlab. Also, somewhat confusingly, if k is a single numeric value
then diag(k) is the k by k identity matrix!

5.7.2 Linear equations and inversion

Solving linear equations is the inverse of matrix multiplication. When after

> b <- A %*% x

only A and b are given, the vector x is the solution of that linear equation system. In R,

> solve(A,b)

solves the system, returning x (up to some accuracy loss). Note that in linear algebra, formally
x = A−1b where A−1 denotes the inverse of A, which can be computed by

solve(A)

but rarely is needed. Numerically, it is both inefficient and potentially unstable to compute x

<- solve(A) %*% b instead of solve(A,b).

The quadratic form xTA−1x which is used in multivariate computations, should be computed
by something like2 x %*% solve(A,x), rather than computing the inverse of A.

1 Note that x %*% x is ambiguous, as it could mean either xT x or xxT , where x is the column form. In such
cases the smaller matrix seems implicitly to be the interpretation adopted, so the scalar xT x is in this case
the result. The matrix xxT may be calculated either by cbind(x) %*% x or x %*% rbind(x) since the result of
rbind() or cbind() is always a matrix. However, the best way to compute xT x or xxT is crossprod(x) or x
%o% x respectively.

2 Even better would be to form a matrix square root B with A = BBT and find the squared length of the
solution of By = x , perhaps using the Cholesky or eigen decomposition of A.
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5.7.3 Eigenvalues and eigenvectors

The function eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric matrix
Sm. The result of this function is a list of two components named values and vectors. The
assignment

> ev <- eigen(Sm)

will assign this list to ev. Then ev$val is the vector of eigenvalues of Sm and ev$vec is the
matrix of corresponding eigenvectors. Had we only needed the eigenvalues we could have used
the assignment:

> evals <- eigen(Sm)$values

evals now holds the vector of eigenvalues and the second component is discarded. If the
expression

> eigen(Sm)

is used by itself as a command the two components are printed, with their names. For large
matrices it is better to avoid computing the eigenvectors if they are not needed by using the
expression

> evals <- eigen(Sm, only.values = TRUE)$values

5.7.4 Singular value decomposition and determinants

The function svd(M) takes an arbitrary matrix argument, M, and calculates the singular value
decomposition of M. This consists of a matrix of orthonormal columns U with the same column
space as M, a second matrix of orthonormal columns V whose column space is the row space
of M and a diagonal matrix of positive entries D such that M = U %*% D %*% t(V). D is actually
returned as a vector of the diagonal elements. The result of svd(M) is actually a list of three
components named d, u and v, with evident meanings.

If M is in fact square, then, it is not hard to see that

> absdetM <- prod(svd(M)$d)

calculates the absolute value of the determinant of M. If this calculation were needed often with
a variety of matrices it could be defined as an R function

> absdet <- function(M) prod(svd(M)$d)

after which we could use absdet() as just another R function. As a further trivial but potentially
useful example, you might like to consider writing a function, say tr(), to calculate the trace
of a square matrix. [Hint: You will not need to use an explicit loop. Look again at the diag()
function.]

R has a builtin function det to calculate a determinant, including the sign, and another,
determinant, to give the sign and modulus (optionally on log scale),

5.7.5 Least squares fitting and the QR decomposition

The function lsfit() returns a list giving results of a least squares fitting procedure. An
assignment such as

> ans <- lsfit(X, y)

gives the results of a least squares fit where y is the vector of observations and X is the design
matrix. See the help facility for more details, and also for the follow-up function ls.diag() for,
among other things, regression diagnostics. Note that a grand mean term is automatically in-
cluded and need not be included explicitly as a column of X. Further note that you almost always
will prefer using lm(.) (see Section 11.2 [Linear models], page 54) to lsfit() for regression
modelling.

Another closely related function is qr() and its allies. Consider the following assignments
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> Xplus <- qr(X)

> b <- qr.coef(Xplus, y)

> fit <- qr.fitted(Xplus, y)

> res <- qr.resid(Xplus, y)

These compute the orthogonal projection of y onto the range of X in fit, the projection onto
the orthogonal complement in res and the coefficient vector for the projection in b, that is, b is
essentially the result of the Matlab ‘backslash’ operator.

It is not assumed that X has full column rank. Redundancies will be discovered and removed
as they are found.

This alternative is the older, low-level way to perform least squares calculations. Although
still useful in some contexts, it would now generally be replaced by the statistical models features,
as will be discussed in Chapter 11 [Statistical models in R], page 51.

5.8 Forming partitioned matrices, cbind() and rbind()

As we have already seen informally, matrices can be built up from other vectors and matrices
by the functions cbind() and rbind(). Roughly cbind() forms matrices by binding together
matrices horizontally, or column-wise, and rbind() vertically, or row-wise.

In the assignment

> X <- cbind(arg_1, arg_2, arg_3, ...)

the arguments to cbind() must be either vectors of any length, or matrices with the same
column size, that is the same number of rows. The result is a matrix with the concatenated
arguments arg 1, arg 2, . . . forming the columns.

If some of the arguments to cbind() are vectors they may be shorter than the column size
of any matrices present, in which case they are cyclically extended to match the matrix column
size (or the length of the longest vector if no matrices are given).

The function rbind() does the corresponding operation for rows. In this case any vector
argument, possibly cyclically extended, are of course taken as row vectors.

Suppose X1 and X2 have the same number of rows. To combine these by columns into a
matrix X, together with an initial column of 1s we can use

> X <- cbind(1, X1, X2)

The result of rbind() or cbind() always has matrix status. Hence cbind(x) and rbind(x)

are possibly the simplest ways explicitly to allow the vector x to be treated as a column or row
matrix respectively.

5.9 The concatenation function, c(), with arrays

It should be noted that whereas cbind() and rbind() are concatenation functions that respect
dim attributes, the basic c() function does not, but rather clears numeric objects of all dim and
dimnames attributes. This is occasionally useful in its own right.

The official way to coerce an array back to a simple vector object is to use as.vector()

> vec <- as.vector(X)

However a similar result can be achieved by using c() with just one argument, simply for
this side-effect:

> vec <- c(X)

There are slight differences between the two, but ultimately the choice between them is
largely a matter of style (with the former being preferable).
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5.10 Frequency tables from factors

Recall that a factor defines a partition into groups. Similarly a pair of factors defines a two
way cross classification, and so on. The function table() allows frequency tables to be calcu-
lated from equal length factors. If there are k factor arguments, the result is a k-way array of
frequencies.

Suppose, for example, that statef is a factor giving the state code for each entry in a data
vector. The assignment

> statefr <- table(statef)

gives in statefr a table of frequencies of each state in the sample. The frequencies are ordered
and labelled by the levels attribute of the factor. This simple case is equivalent to, but more
convenient than,

> statefr <- tapply(statef, statef, length)

Further suppose that incomef is a factor giving a suitably defined “income class” for each
entry in the data vector, for example with the cut() function:

> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef

Then to calculate a two-way table of frequencies:

> table(incomef,statef)

statef

incomef act nsw nt qld sa tas vic wa

(35,45] 1 1 0 1 0 0 1 0

(45,55] 1 1 1 1 2 0 1 3

(55,65] 0 3 1 3 2 2 2 1

(65,75] 0 1 0 0 0 0 1 0

Extension to higher-way frequency tables is immediate.
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6 Lists and data frames

6.1 Lists

An R list is an object consisting of an ordered collection of objects known as its components.

There is no particular need for the components to be of the same mode or type, and, for
example, a list could consist of a numeric vector, a logical value, a matrix, a complex vector, a
character array, a function, and so on. Here is a simple example of how to make a list:

> Lst <- list(name="Fred", wife="Mary", no.children=3,

child.ages=c(4,7,9))

Components are always numbered and may always be referred to as such. Thus if Lst is
the name of a list with four components, these may be individually referred to as Lst[[1]],
Lst[[2]], Lst[[3]] and Lst[[4]]. If, further, Lst[[4]] is a vector subscripted array then
Lst[[4]][1] is its first entry.

If Lst is a list, then the function length(Lst) gives the number of (top level) components
it has.

Components of lists may also be named, and in this case the component may be referred to
either by giving the component name as a character string in place of the number in double
square brackets, or, more conveniently, by giving an expression of the form

> name$component_name

for the same thing.

This is a very useful convention as it makes it easier to get the right component if you forget
the number.

So in the simple example given above:

Lst$name is the same as Lst[[1]] and is the string "Fred",

Lst$wife is the same as Lst[[2]] and is the string "Mary",

Lst$child.ages[1] is the same as Lst[[4]][1] and is the number 4.

Additionally, one can also use the names of the list components in double square brackets,
i.e., Lst[["name"]] is the same as Lst$name. This is especially useful, when the name of the
component to be extracted is stored in another variable as in

> x <- "name"; Lst[[x]]

It is very important to distinguish Lst[[1]] from Lst[1]. ‘[[...]]’ is the operator used
to select a single element, whereas ‘[...]’ is a general subscripting operator. Thus the former
is the first object in the list Lst, and if it is a named list the name is not included. The latter
is a sublist of the list Lst consisting of the first entry only. If it is a named list, the names are
transferred to the sublist.

The names of components may be abbreviated down to the minimum number of letters needed
to identify them uniquely. Thus Lst$coefficients may be minimally specified as Lst$coe and
Lst$covariance as Lst$cov.

The vector of names is in fact simply an attribute of the list like any other and may be handled
as such. Other structures besides lists may, of course, similarly be given a names attribute also.
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6.2 Constructing and modifying lists

New lists may be formed from existing objects by the function list(). An assignment of the
form

> Lst <- list(name_1=object_1, ..., name_m=object_m)

sets up a list Lst of m components using object 1, . . . , object m for the components and giving
them names as specified by the argument names, (which can be freely chosen). If these names
are omitted, the components are numbered only. The components used to form the list are
copied when forming the new list and the originals are not affected.

Lists, like any subscripted object, can be extended by specifying additional components. For
example

> Lst[5] <- list(matrix=Mat)

6.2.1 Concatenating lists

When the concatenation function c() is given list arguments, the result is an object of mode
list also, whose components are those of the argument lists joined together in sequence.

> list.ABC <- c(list.A, list.B, list.C)

Recall that with vector objects as arguments the concatenation function similarly joined
together all arguments into a single vector structure. In this case all other attributes, such as
dim attributes, are discarded.

6.3 Data frames

A data frame is a list with class "data.frame". There are restrictions on lists that may be made
into data frames, namely

• The components must be vectors (numeric, character, or logical), factors, numeric matrices,
lists, or other data frames.

• Matrices, lists, and data frames provide as many variables to the new data frame as they
have columns, elements, or variables, respectively.

• Numeric vectors, logicals and factors are included as is, and by default1 character vectors
are coerced to be factors, whose levels are the unique values appearing in the vector.

• Vector structures appearing as variables of the data frame must all have the same length,
and matrix structures must all have the same row size.

A data frame may for many purposes be regarded as a matrix with columns possibly of
differing modes and attributes. It may be displayed in matrix form, and its rows and columns
extracted using matrix indexing conventions.

6.3.1 Making data frames

Objects satisfying the restrictions placed on the columns (components) of a data frame may be
used to form one using the function data.frame:

> accountants <- data.frame(home=statef, loot=incomes, shot=incomef)

A list whose components conform to the restrictions of a data frame may be coerced into a
data frame using the function as.data.frame()

The simplest way to construct a data frame from scratch is to use the read.table() function
to read an entire data frame from an external file. This is discussed further in Chapter 7 [Reading
data from files], page 30.

1 Conversion of character columns to factors is overridden using the stringsAsFactors argument to the
data.frame() function.
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6.3.2 attach() and detach()

The $ notation, such as accountants$home, for list components is not always very convenient.
A useful facility would be somehow to make the components of a list or data frame temporarily
visible as variables under their component name, without the need to quote the list name
explicitly each time.

The attach() function takes a ‘database’ such as a list or data frame as its argument. Thus
suppose lentils is a data frame with three variables lentils$u, lentils$v, lentils$w. The
attach

> attach(lentils)

places the data frame in the search path at position 2, and provided there are no variables u, v
or w in position 1, u, v and w are available as variables from the data frame in their own right.
At this point an assignment such as

> u <- v+w

does not replace the component u of the data frame, but rather masks it with another variable
u in the working directory at position 1 on the search path. To make a permanent change to
the data frame itself, the simplest way is to resort once again to the $ notation:

> lentils$u <- v+w

However the new value of component u is not visible until the data frame is detached and
attached again.

To detach a data frame, use the function

> detach()

More precisely, this statement detaches from the search path the entity currently at
position 2. Thus in the present context the variables u, v and w would be no longer visible,
except under the list notation as lentils$u and so on. Entities at positions greater than 2
on the search path can be detached by giving their number to detach, but it is much safer to
always use a name, for example by detach(lentils) or detach("lentils")

Note: In R lists and data frames can only be attached at position 2 or above, and
what is attached is a copy of the original object. You can alter the attached values
via assign, but the original list or data frame is unchanged.

6.3.3 Working with data frames

A useful convention that allows you to work with many different problems comfortably together
in the same working directory is

• gather together all variables for any well defined and separate problem in a data frame
under a suitably informative name;

• when working with a problem attach the appropriate data frame at position 2, and use the
working directory at level 1 for operational quantities and temporary variables;

• before leaving a problem, add any variables you wish to keep for future reference to the
data frame using the $ form of assignment, and then detach();

• finally remove all unwanted variables from the working directory and keep it as clean of
left-over temporary variables as possible.

In this way it is quite simple to work with many problems in the same directory, all of which
have variables named x, y and z, for example.

6.3.4 Attaching arbitrary lists

attach() is a generic function that allows not only directories and data frames to be attached
to the search path, but other classes of object as well. In particular any object of mode "list"
may be attached in the same way:
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> attach(any.old.list)

Anything that has been attached can be detached by detach, by position number or, prefer-
ably, by name.

6.3.5 Managing the search path

The function search shows the current search path and so is a very useful way to keep track of
which data frames and lists (and packages) have been attached and detached. Initially it gives

> search()

[1] ".GlobalEnv" "Autoloads" "package:base"

where .GlobalEnv is the workspace.2

After lentils is attached we have

> search()

[1] ".GlobalEnv" "lentils" "Autoloads" "package:base"

> ls(2)

[1] "u" "v" "w"

and as we see ls (or objects) can be used to examine the contents of any position on the search
path.

Finally, we detach the data frame and confirm it has been removed from the search path.

> detach("lentils")

> search()

[1] ".GlobalEnv" "Autoloads" "package:base"

2 See the on-line help for autoload for the meaning of the second term.
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7 Reading data from files

Large data objects will usually be read as values from external files rather than entered during
an R session at the keyboard. R input facilities are simple and their requirements are fairly
strict and even rather inflexible. There is a clear presumption by the designers of R that you
will be able to modify your input files using other tools, such as file editors or Perl1 to fit in
with the requirements of R. Generally this is very simple.

If variables are to be held mainly in data frames, as we strongly suggest they should be, an
entire data frame can be read directly with the read.table() function. There is also a more
primitive input function, scan(), that can be called directly.

For more details on importing data into R and also exporting data, see the R Data Im-
port/Export manual.

7.1 The read.table() function

To read an entire data frame directly, the external file will normally have a special form.

• The first line of the file should have a name for each variable in the data frame.

• Each additional line of the file has as its first item a row label and the values for each
variable.

If the file has one fewer item in its first line than in its second, this arrangement is presumed
to be in force. So the first few lines of a file to be read as a data frame might look as follows.� �

Input file form with names and row labels:

Price Floor Area Rooms Age Cent.heat

01 52.00 111.0 830 5 6.2 no

02 54.75 128.0 710 5 7.5 no

03 57.50 101.0 1000 5 4.2 no

04 57.50 131.0 690 6 8.8 no

05 59.75 93.0 900 5 1.9 yes

...
 	
By default numeric items (except row labels) are read as numeric variables and non-numeric

variables, such as Cent.heat in the example, as factors. This can be changed if necessary.

The function read.table() can then be used to read the data frame directly

> HousePrice <- read.table("houses.data")

Often you will want to omit including the row labels directly and use the default labels. In
this case the file may omit the row label column as in the following.� �

Input file form without row labels:

Price Floor Area Rooms Age Cent.heat

52.00 111.0 830 5 6.2 no

54.75 128.0 710 5 7.5 no

57.50 101.0 1000 5 4.2 no

57.50 131.0 690 6 8.8 no

59.75 93.0 900 5 1.9 yes

...
 	
1 Under UNIX, the utilities sed orawk can be used.
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The data frame may then be read as

> HousePrice <- read.table("houses.data", header=TRUE)

where the header=TRUE option specifies that the first line is a line of headings, and hence, by
implication from the form of the file, that no explicit row labels are given.

7.2 The scan() function

Suppose the data vectors are of equal length and are to be read in parallel. Further suppose
that there are three vectors, the first of mode character and the remaining two of mode numeric,
and the file is input.dat. The first step is to use scan() to read in the three vectors as a list,
as follows

> inp <- scan("input.dat", list("",0,0))

The second argument is a dummy list structure that establishes the mode of the three vectors
to be read. The result, held in inp, is a list whose components are the three vectors read in. To
separate the data items into three separate vectors, use assignments like

> label <- inp[[1]]; x <- inp[[2]]; y <- inp[[3]]

More conveniently, the dummy list can have named components, in which case the names
can be used to access the vectors read in. For example

> inp <- scan("input.dat", list(id="", x=0, y=0))

If you wish to access the variables separately they may either be re-assigned to variables in
the working frame:

> label <- inp$id; x <- inp$x; y <- inp$y

or the list may be attached at position 2 of the search path (see Section 6.3.4 [Attaching arbitrary
lists], page 28).

If the second argument is a single value and not a list, a single vector is read in, all components
of which must be of the same mode as the dummy value.

> X <- matrix(scan("light.dat", 0), ncol=5, byrow=TRUE)

There are more elaborate input facilities available and these are detailed in the manuals.

7.3 Accessing builtin datasets

Around 100 datasets are supplied with R (in package datasets), and others are available in
packages (including the recommended packages supplied with R). To see the list of datasets
currently available use

data()

All the datasets supplied with R are available directly by name. However, many packages still
use the obsolete convention in which data was also used to load datasets into R, for example

data(infert)

and this can still be used with the standard packages (as in this example). In most cases this
will load an R object of the same name. However, in a few cases it loads several objects, so see
the on-line help for the object to see what to expect.

7.3.1 Loading data from other R packages

To access data from a particular package, use the package argument, for example

data(package="rpart")

data(Puromycin, package="datasets")

If a package has been attached by library, its datasets are automatically included in the
search.

User-contributed packages can be a rich source of datasets.
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7.4 Editing data

When invoked on a data frame or matrix, edit brings up a separate spreadsheet-like environment
for editing. This is useful for making small changes once a data set has been read. The command

> xnew <- edit(xold)

will allow you to edit your data set xold, and on completion the changed object is assigned
to xnew. If you want to alter the original dataset xold, the simplest way is to use fix(xold),
which is equivalent to xold <- edit(xold).

Use

> xnew <- edit(data.frame())

to enter new data via the spreadsheet interface.
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8 Probability distributions

8.1 R as a set of statistical tables

One convenient use of R is to provide a comprehensive set of statistical tables. Functions are
provided to evaluate the cumulative distribution function P (X ≤ x), the probability density
function and the quantile function (given q, the smallest x such that P (X ≤ x) > q), and to
simulate from the distribution.

Distribution R name additional arguments
beta beta shape1, shape2, ncp

binomial binom size, prob

Cauchy cauchy location, scale

chi-squared chisq df, ncp

exponential exp rate

F f df1, df2, ncp

gamma gamma shape, scale

geometric geom prob

hypergeometric hyper m, n, k

log-normal lnorm meanlog, sdlog

logistic logis location, scale

negative binomial nbinom size, prob

normal norm mean, sd

Poisson pois lambda

signed rank signrank n

Student’s t t df, ncp

uniform unif min, max

Weibull weibull shape, scale

Wilcoxon wilcox m, n

Prefix the name given here by ‘d’ for the density, ‘p’ for the CDF, ‘q’ for the quantile function
and ‘r’ for simulation (random deviates). The first argument is x for dxxx, q for pxxx, p for
qxxx and n for rxxx (except for rhyper, rsignrank and rwilcox, for which it is nn). In not
quite all cases is the non-centrality parameter ncp currently available: see the on-line help for
details.

The pxxx and qxxx functions all have logical arguments lower.tail and log.p and the
dxxx ones have log. This allows, e.g., getting the cumulative (or “integrated”) hazard function,
H(t) = − log(1− F (t)), by

- pxxx(t, ..., lower.tail = FALSE, log.p = TRUE)

or more accurate log-likelihoods (by dxxx(..., log = TRUE)), directly.

In addition there are functions ptukey and qtukey for the distribution of the studentized
range of samples from a normal distribution, and dmultinom and rmultinom for the multinomial
distribution. Further distributions are available in contributed packages, notably SuppDists
(https://CRAN.R-project.org/package=SuppDists).

Here are some examples

> ## 2-tailed p-value for t distribution
> 2*pt(-2.43, df = 13)

> ## upper 1% point for an F(2, 7) distribution
> qf(0.01, 2, 7, lower.tail = FALSE)

See the on-line help on RNG for how random-number generation is done in R.
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8.2 Examining the distribution of a set of data

Given a (univariate) set of data we can examine its distribution in a large number of ways. The
simplest is to examine the numbers. Two slightly different summaries are given by summary and
fivenum and a display of the numbers by stem (a “stem and leaf” plot).

> attach(faithful)

> summary(eruptions)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

> fivenum(eruptions)

[1] 1.6000 2.1585 4.0000 4.4585 5.1000

> stem(eruptions)

The decimal point is 1 digit(s) to the left of the |

16 | 070355555588

18 | 000022233333335577777777888822335777888

20 | 00002223378800035778

22 | 0002335578023578

24 | 00228

26 | 23

28 | 080

30 | 7

32 | 2337

34 | 250077

36 | 0000823577

38 | 2333335582225577

40 | 0000003357788888002233555577778

42 | 03335555778800233333555577778

44 | 02222335557780000000023333357778888

46 | 0000233357700000023578

48 | 00000022335800333

50 | 0370

A stem-and-leaf plot is like a histogram, and R has a function hist to plot histograms.

> hist(eruptions)

## make the bins smaller, make a plot of density
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)

> lines(density(eruptions, bw=0.1))

> rug(eruptions) # show the actual data points

More elegant density plots can be made by density, and we added a line produced by
density in this example. The bandwidth bw was chosen by trial-and-error as the default gives
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too much smoothing (it usually does for “interesting” densities). (Better automated methods of
bandwidth choice are available, and in this example bw = "SJ" gives a good result.)

Histogram of eruptions
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We can plot the empirical cumulative distribution function by using the function ecdf.

> plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)

This distribution is obviously far from any standard distribution. How about the right-hand
mode, say eruptions of longer than 3 minutes? Let us fit a normal distribution and overlay the
fitted CDF.

> long <- eruptions[eruptions > 3]

> plot(ecdf(long), do.points=FALSE, verticals=TRUE)

> x <- seq(3, 5.4, 0.01)

> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)
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Quantile-quantile (Q-Q) plots can help us examine this more carefully.

par(pty="s") # arrange for a square figure region

qqnorm(long); qqline(long)
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which shows a reasonable fit but a shorter right tail than one would expect from a normal
distribution. Let us compare this with some simulated data from a t distribution
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x <- rt(250, df = 5)

qqnorm(x); qqline(x)

which will usually (if it is a random sample) show longer tails than expected for a normal. We
can make a Q-Q plot against the generating distribution by

qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")

qqline(x)

Finally, we might want a more formal test of agreement with normality (or not). R provides
the Shapiro-Wilk test

> shapiro.test(long)

Shapiro-Wilk normality test

data: long

W = 0.9793, p-value = 0.01052

and the Kolmogorov-Smirnov test

> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))

One-sample Kolmogorov-Smirnov test

data: long

D = 0.0661, p-value = 0.4284

alternative hypothesis: two.sided

(Note that the distribution theory is not valid here as we have estimated the parameters of the
normal distribution from the same sample.)

8.3 One- and two-sample tests

So far we have compared a single sample to a normal distribution. A much more common
operation is to compare aspects of two samples. Note that in R, all “classical” tests including
the ones used below are in package stats which is normally loaded.

Consider the following sets of data on the latent heat of the fusion of ice (cal/gm) from Rice
(1995, p.490)
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Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97

80.05 80.03 80.02 80.00 80.02

Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

Boxplots provide a simple graphical comparison of the two samples.

A <- scan()

79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97

80.05 80.03 80.02 80.00 80.02

B <- scan()

80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

boxplot(A, B)

which indicates that the first group tends to give higher results than the second.
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To test for the equality of the means of the two examples, we can use an unpaired t-test by

> t.test(A, B)

Welch Two Sample t-test

data: A and B

t = 3.2499, df = 12.027, p-value = 0.00694

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.01385526 0.07018320

sample estimates:

mean of x mean of y

80.02077 79.97875

which does indicate a significant difference, assuming normality. By default the R function does
not assume equality of variances in the two samples (in contrast to the similar S-Plus t.test

function). We can use the F test to test for equality in the variances, provided that the two
samples are from normal populations.

> var.test(A, B)

F test to compare two variances
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data: A and B

F = 0.5837, num df = 12, denom df = 7, p-value = 0.3938

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.1251097 2.1052687

sample estimates:

ratio of variances

0.5837405

which shows no evidence of a significant difference, and so we can use the classical t-test that
assumes equality of the variances.

> t.test(A, B, var.equal=TRUE)

Two Sample t-test

data: A and B

t = 3.4722, df = 19, p-value = 0.002551

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.01669058 0.06734788

sample estimates:

mean of x mean of y

80.02077 79.97875

All these tests assume normality of the two samples. The two-sample Wilcoxon (or Mann-
Whitney) test only assumes a common continuous distribution under the null hypothesis.

> wilcox.test(A, B)

Wilcoxon rank sum test with continuity correction

data: A and B

W = 89, p-value = 0.007497

alternative hypothesis: true location shift is not equal to 0

Warning message:

Cannot compute exact p-value with ties in: wilcox.test(A, B)

Note the warning: there are several ties in each sample, which suggests strongly that these data
are from a discrete distribution (probably due to rounding).

There are several ways to compare graphically the two samples. We have already seen a pair
of boxplots. The following

> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))

> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)

will show the two empirical CDFs, and qqplot will perform a Q-Q plot of the two samples. The
Kolmogorov-Smirnov test is of the maximal vertical distance between the two ecdf’s, assuming
a common continuous distribution:

> ks.test(A, B)

Two-sample Kolmogorov-Smirnov test

data: A and B

D = 0.5962, p-value = 0.05919

alternative hypothesis: two-sided
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Warning message:

cannot compute correct p-values with ties in: ks.test(A, B)
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9 Grouping, loops and conditional execution

9.1 Grouped expressions

R is an expression language in the sense that its only command type is a function or expression
which returns a result. Even an assignment is an expression whose result is the value assigned,
and it may be used wherever any expression may be used; in particular multiple assignments
are possible.

Commands may be grouped together in braces, {expr_1; ...; expr_m}, in which case the
value of the group is the result of the last expression in the group evaluated. Since such a group
is also an expression it may, for example, be itself included in parentheses and used a part of an
even larger expression, and so on.

9.2 Control statements

9.2.1 Conditional execution: if statements

The language has available a conditional construction of the form

> if (expr_1) expr_2 else expr_3

where expr 1 must evaluate to a single logical value and the result of the entire expression is
then evident.

The “short-circuit” operators && and || are often used as part of the condition in an if

statement. Whereas & and | apply element-wise to vectors, && and || apply to vectors of length
one, and only evaluate their second argument if necessary.

There is a vectorized version of the if/else construct, the ifelse function. This has the
form ifelse(condition, a, b) and returns a vector of the length of its longest argument, with
elements a[i] if condition[i] is true, otherwise b[i].

9.2.2 Repetitive execution: for loops, repeat and while

There is also a for loop construction which has the form

> for (name in expr_1) expr_2

where name is the loop variable. expr 1 is a vector expression, (often a sequence like 1:20), and
expr 2 is often a grouped expression with its sub-expressions written in terms of the dummy
name. expr 2 is repeatedly evaluated as name ranges through the values in the vector result of
expr 1.

As an example, suppose ind is a vector of class indicators and we wish to produce separate
plots of y versus x within classes. One possibility here is to use coplot(),1 which will produce
an array of plots corresponding to each level of the factor. Another way to do this, now putting
all plots on the one display, is as follows:

> xc <- split(x, ind)

> yc <- split(y, ind)

> for (i in 1:length(yc)) {

plot(xc[[i]], yc[[i]])

abline(lsfit(xc[[i]], yc[[i]]))

}

(Note the function split() which produces a list of vectors obtained by splitting a larger
vector according to the classes specified by a factor. This is a useful function, mostly used in
connection with boxplots. See the help facility for further details.)

1 to be discussed later, or use xyplot from package lattice (https://CRAN.R-project.org/package=lattice).
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Warning: for() loops are used in R code much less often than in compiled languages.
Code that takes a ‘whole object’ view is likely to be both clearer and faster in R.

Other looping facilities include the

> repeat expr

statement and the

> while (condition) expr

statement.

The break statement can be used to terminate any loop, possibly abnormally. This is the
only way to terminate repeat loops.

The next statement can be used to discontinue one particular cycle and skip to the “next”.

Control statements are most often used in connection with functions which are discussed in
Chapter 10 [Writing your own functions], page 42, and where more examples will emerge.
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10 Writing your own functions

As we have seen informally along the way, the R language allows the user to create objects of
mode function. These are true R functions that are stored in a special internal form and may be
used in further expressions and so on. In the process, the language gains enormously in power,
convenience and elegance, and learning to write useful functions is one of the main ways to make
your use of R comfortable and productive.

It should be emphasized that most of the functions supplied as part of the R system, such
as mean(), var(), postscript() and so on, are themselves written in R and thus do not differ
materially from user written functions.

A function is defined by an assignment of the form

> name <- function(arg_1, arg_2, ...) expression

The expression is an R expression, (usually a grouped expression), that uses the arguments,
arg i, to calculate a value. The value of the expression is the value returned for the function.

A call to the function then usually takes the form name(expr_1, expr_2, ...) and may
occur anywhere a function call is legitimate.

10.1 Simple examples

As a first example, consider a function to calculate the two sample t-statistic, showing “all the
steps”. This is an artificial example, of course, since there are other, simpler ways of achieving
the same end.

The function is defined as follows:

> twosam <- function(y1, y2) {

n1 <- length(y1); n2 <- length(y2)

yb1 <- mean(y1); yb2 <- mean(y2)

s1 <- var(y1); s2 <- var(y2)

s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)

tst <- (yb1 - yb2)/sqrt(s*(1/n1 + 1/n2))

tst

}

With this function defined, you could perform two sample t-tests using a call such as

> tstat <- twosam(data$male, data$female); tstat

As a second example, consider a function to emulate directly the Matlab backslash com-
mand, which returns the coefficients of the orthogonal projection of the vector y onto the column
space of the matrix, X. (This is ordinarily called the least squares estimate of the regression
coefficients.) This would ordinarily be done with the qr() function; however this is sometimes
a bit tricky to use directly and it pays to have a simple function such as the following to use it
safely.

Thus given a n by 1 vector y and an n by p matrix X then X y is defined as (XTX)−XTy,
where (XTX)− is a generalized inverse of X ′X.

> bslash <- function(X, y) {

X <- qr(X)

qr.coef(X, y)

}

After this object is created it may be used in statements such as

> regcoeff <- bslash(Xmat, yvar)

and so on.
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The classical R function lsfit() does this job quite well, and more1. It in turn uses the
functions qr() and qr.coef() in the slightly counterintuitive way above to do this part of the
calculation. Hence there is probably some value in having just this part isolated in a simple to
use function if it is going to be in frequent use. If so, we may wish to make it a matrix binary
operator for even more convenient use.

10.2 Defining new binary operators

Had we given the bslash() function a different name, namely one of the form

%anything%

it could have been used as a binary operator in expressions rather than in function form. Suppose,
for example, we choose ! for the internal character. The function definition would then start as

> "%!%" <- function(X, y) { ... }

(Note the use of quote marks.) The function could then be used as X %!% y. (The backslash
symbol itself is not a convenient choice as it presents special problems in this context.)

The matrix multiplication operator, %*%, and the outer product matrix operator %o% are
other examples of binary operators defined in this way.

10.3 Named arguments and defaults

As first noted in Section 2.3 [Generating regular sequences], page 8, if arguments to called
functions are given in the “name=object” form, they may be given in any order. Furthermore
the argument sequence may begin in the unnamed, positional form, and specify named arguments
after the positional arguments.

Thus if there is a function fun1 defined by

> fun1 <- function(data, data.frame, graph, limit) {

[function body omitted]
}

then the function may be invoked in several ways, for example

> ans <- fun1(d, df, TRUE, 20)

> ans <- fun1(d, df, graph=TRUE, limit=20)

> ans <- fun1(data=d, limit=20, graph=TRUE, data.frame=df)

are all equivalent.

In many cases arguments can be given commonly appropriate default values, in which case
they may be omitted altogether from the call when the defaults are appropriate. For example,
if fun1 were defined as

> fun1 <- function(data, data.frame, graph=TRUE, limit=20) { ... }

it could be called as

> ans <- fun1(d, df)

which is now equivalent to the three cases above, or as

> ans <- fun1(d, df, limit=10)

which changes one of the defaults.

It is important to note that defaults may be arbitrary expressions, even involving other
arguments to the same function; they are not restricted to be constants as in our simple example
here.

1 See also the methods described in Chapter 11 [Statistical models in R], page 51
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10.4 The ‘...’ argument

Another frequent requirement is to allow one function to pass on argument settings to another.
For example many graphics functions use the function par() and functions like plot() allow the
user to pass on graphical parameters to par() to control the graphical output. (See Section 12.4.1
[The par() function], page 68, for more details on the par() function.) This can be done by
including an extra argument, literally ‘...’, of the function, which may then be passed on. An
outline example is given below.

fun1 <- function(data, data.frame, graph=TRUE, limit=20, ...) {

[omitted statements]
if (graph)

par(pch="*", ...)

[more omissions]
}

Less frequently, a function will need to refer to components of ‘...’. The expression
list(...) evaluates all such arguments and returns them in a named list, while ..1, ..2,
etc. evaluate them one at a time, with ‘..n’ returning the n’th unmatched argument.

10.5 Assignments within functions

Note that any ordinary assignments done within the function are local and temporary and are
lost after exit from the function. Thus the assignment X <- qr(X) does not affect the value of
the argument in the calling program.

To understand completely the rules governing the scope of R assignments the reader needs
to be familiar with the notion of an evaluation frame. This is a somewhat advanced, though
hardly difficult, topic and is not covered further here.

If global and permanent assignments are intended within a function, then either the “su-
perassignment” operator, <<- or the function assign() can be used. See the help document for
details. S-Plus users should be aware that <<- has different semantics in R. These are discussed
further in Section 10.7 [Scope], page 46.

10.6 More advanced examples

10.6.1 Efficiency factors in block designs

As a more complete, if a little pedestrian, example of a function, consider finding the effi-
ciency factors for a block design. (Some aspects of this problem have already been discussed in
Section 5.3 [Index matrices], page 19.)

A block design is defined by two factors, say blocks (b levels) and varieties (v levels). If R
and K are the v by v and b by b replications and block size matrices, respectively, and N is the
b by v incidence matrix, then the efficiency factors are defined as the eigenvalues of the matrix

E = Iv −R−1/2NTK−1NR−1/2 = Iv −ATA,

where A = K−1/2NR−1/2. One way to write the function is given below.

> bdeff <- function(blocks, varieties) {

blocks <- as.factor(blocks) # minor safety move
b <- length(levels(blocks))

varieties <- as.factor(varieties) # minor safety move
v <- length(levels(varieties))

K <- as.vector(table(blocks)) # remove dim attr
R <- as.vector(table(varieties)) # remove dim attr
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N <- table(blocks, varieties)

A <- 1/sqrt(K) * N * rep(1/sqrt(R), rep(b, v))

sv <- svd(A)

list(eff=1 - sv$d^2, blockcv=sv$u, varietycv=sv$v)

}

It is numerically slightly better to work with the singular value decomposition on this occasion
rather than the eigenvalue routines.

The result of the function is a list giving not only the efficiency factors as the first component,
but also the block and variety canonical contrasts, since sometimes these give additional useful
qualitative information.

10.6.2 Dropping all names in a printed array

For printing purposes with large matrices or arrays, it is often useful to print them in close block
form without the array names or numbers. Removing the dimnames attribute will not achieve
this effect, but rather the array must be given a dimnames attribute consisting of empty strings.
For example to print a matrix, X

> temp <- X

> dimnames(temp) <- list(rep("", nrow(X)), rep("", ncol(X)))

> temp; rm(temp)

This can be much more conveniently done using a function, no.dimnames(), shown below,
as a “wrap around” to achieve the same result. It also illustrates how some effective and useful
user functions can be quite short.

no.dimnames <- function(a) {

## Remove all dimension names from an array for compact printing.
d <- list()

l <- 0

for(i in dim(a)) {

d[[l <- l + 1]] <- rep("", i)

}

dimnames(a) <- d

a

}

With this function defined, an array may be printed in close format using

> no.dimnames(X)

This is particularly useful for large integer arrays, where patterns are the real interest rather
than the values.

10.6.3 Recursive numerical integration

Functions may be recursive, and may themselves define functions within themselves. Note,
however, that such functions, or indeed variables, are not inherited by called functions in higher
evaluation frames as they would be if they were on the search path.

The example below shows a naive way of performing one-dimensional numerical integration.
The integrand is evaluated at the end points of the range and in the middle. If the one-panel
trapezium rule answer is close enough to the two panel, then the latter is returned as the value.
Otherwise the same process is recursively applied to each panel. The result is an adaptive
integration process that concentrates function evaluations in regions where the integrand is
farthest from linear. There is, however, a heavy overhead, and the function is only competitive
with other algorithms when the integrand is both smooth and very difficult to evaluate.

The example is also given partly as a little puzzle in R programming.

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 51 of 105



Chapter 10: Writing your own functions 46

area <- function(f, a, b, eps = 1.0e-06, lim = 10) {

fun1 <- function(f, a, b, fa, fb, a0, eps, lim, fun) {

## function ‘fun1’ is only visible inside ‘area’
d <- (a + b)/2

h <- (b - a)/4

fd <- f(d)

a1 <- h * (fa + fd)

a2 <- h * (fd + fb)

if(abs(a0 - a1 - a2) < eps || lim == 0)

return(a1 + a2)

else {

return(fun(f, a, d, fa, fd, a1, eps, lim - 1, fun) +

fun(f, d, b, fd, fb, a2, eps, lim - 1, fun))

}

}

fa <- f(a)

fb <- f(b)

a0 <- ((fa + fb) * (b - a))/2

fun1(f, a, b, fa, fb, a0, eps, lim, fun1)

}

10.7 Scope

The discussion in this section is somewhat more technical than in other parts of this document.
However, it details one of the major differences between S-Plus and R.

The symbols which occur in the body of a function can be divided into three classes; formal
parameters, local variables and free variables. The formal parameters of a function are those
occurring in the argument list of the function. Their values are determined by the process of
binding the actual function arguments to the formal parameters. Local variables are those whose
values are determined by the evaluation of expressions in the body of the functions. Variables
which are not formal parameters or local variables are called free variables. Free variables become
local variables if they are assigned to. Consider the following function definition.

f <- function(x) {

y <- 2*x

print(x)

print(y)

print(z)

}

In this function, x is a formal parameter, y is a local variable and z is a free variable.

In R the free variable bindings are resolved by first looking in the environment in which the
function was created. This is called lexical scope. First we define a function called cube.

cube <- function(n) {

sq <- function() n*n

n*sq()

}

The variable n in the function sq is not an argument to that function. Therefore it is a free
variable and the scoping rules must be used to ascertain the value that is to be associated with
it. Under static scope (S-Plus) the value is that associated with a global variable named n.
Under lexical scope (R) it is the parameter to the function cube since that is the active binding
for the variable n at the time the function sq was defined. The difference between evaluation
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in R and evaluation in S-Plus is that S-Plus looks for a global variable called n while R first
looks for a variable called n in the environment created when cube was invoked.

## first evaluation in S
S> cube(2)

Error in sq(): Object "n" not found

Dumped

S> n <- 3

S> cube(2)

[1] 18

## then the same function evaluated in R
R> cube(2)

[1] 8

Lexical scope can also be used to give functions mutable state. In the following example
we show how R can be used to mimic a bank account. A functioning bank account needs to
have a balance or total, a function for making withdrawals, a function for making deposits and
a function for stating the current balance. We achieve this by creating the three functions
within account and then returning a list containing them. When account is invoked it takes
a numerical argument total and returns a list containing the three functions. Because these
functions are defined in an environment which contains total, they will have access to its value.

The special assignment operator, <<-, is used to change the value associated with total.
This operator looks back in enclosing environments for an environment that contains the symbol
total and when it finds such an environment it replaces the value, in that environment, with
the value of right hand side. If the global or top-level environment is reached without finding
the symbol total then that variable is created and assigned to there. For most users <<- creates
a global variable and assigns the value of the right hand side to it2. Only when <<- has been
used in a function that was returned as the value of another function will the special behavior
described here occur.

open.account <- function(total) {

list(

deposit = function(amount) {

if(amount <= 0)

stop("Deposits must be positive!\n")

total <<- total + amount

cat(amount, "deposited. Your balance is", total, "\n\n")

},

withdraw = function(amount) {

if(amount > total)

stop("You don’t have that much money!\n")

total <<- total - amount

cat(amount, "withdrawn. Your balance is", total, "\n\n")

},

balance = function() {

cat("Your balance is", total, "\n\n")

}

)

}

ross <- open.account(100)

2 In some sense this mimics the behavior in S-Plus since in S-Plus this operator always creates or assigns to
a global variable.
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robert <- open.account(200)

ross$withdraw(30)

ross$balance()

robert$balance()

ross$deposit(50)

ross$balance()

ross$withdraw(500)

10.8 Customizing the environment

Users can customize their environment in several different ways. There is a site initialization
file and every directory can have its own special initialization file. Finally, the special functions
.First and .Last can be used.

The location of the site initialization file is taken from the value of the R_PROFILE environment
variable. If that variable is unset, the file Rprofile.site in the R home subdirectory etc is used.
This file should contain the commands that you want to execute every time R is started under
your system. A second, personal, profile file named .Rprofile3 can be placed in any directory. If
R is invoked in that directory then that file will be sourced. This file gives individual users control
over their workspace and allows for different startup procedures in different working directories.
If no .Rprofile file is found in the startup directory, then R looks for a .Rprofile file in the
user’s home directory and uses that (if it exists). If the environment variable R_PROFILE_USER

is set, the file it points to is used instead of the .Rprofile files.

Any function named .First() in either of the two profile files or in the .RData image has
a special status. It is automatically performed at the beginning of an R session and may be
used to initialize the environment. For example, the definition in the example below alters the
prompt to $ and sets up various other useful things that can then be taken for granted in the
rest of the session.

Thus, the sequence in which files are executed is, Rprofile.site, the user profile, .RData
and then .First(). A definition in later files will mask definitions in earlier files.

> .First <- function() {

options(prompt="$ ", continue="+\t") # $ is the prompt
options(digits=5, length=999) # custom numbers and printout
x11() # for graphics
par(pch = "+") # plotting character
source(file.path(Sys.getenv("HOME"), "R", "mystuff.R"))

# my personal functions
library(MASS) # attach a package

}

Similarly a function .Last(), if defined, is (normally) executed at the very end of the session.
An example is given below.

> .Last <- function() {

graphics.off() # a small safety measure.
cat(paste(date(),"\nAdios\n")) # Is it time for lunch?

}

3 So it is hidden under UNIX.
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10.9 Classes, generic functions and object orientation

The class of an object determines how it will be treated by what are known as generic functions.
Put the other way round, a generic function performs a task or action on its arguments specific
to the class of the argument itself. If the argument lacks any class attribute, or has a class
not catered for specifically by the generic function in question, there is always a default action
provided.

An example makes things clearer. The class mechanism offers the user the facility of designing
and writing generic functions for special purposes. Among the other generic functions are plot()
for displaying objects graphically, summary() for summarizing analyses of various types, and
anova() for comparing statistical models.

The number of generic functions that can treat a class in a specific way can be quite large.
For example, the functions that can accommodate in some fashion objects of class "data.frame"
include

[ [[<- any as.matrix

[<- mean plot summary

A currently complete list can be got by using the methods() function:

> methods(class="data.frame")

Conversely the number of classes a generic function can handle can also be quite large.
For example the plot() function has a default method and variants for objects of classes
"data.frame", "density", "factor", and more. A complete list can be got again by using
the methods() function:

> methods(plot)

For many generic functions the function body is quite short, for example

> coef

function (object, ...)

UseMethod("coef")

The presence of UseMethod indicates this is a generic function. To see what methods are available
we can use methods()

> methods(coef)

[1] coef.aov* coef.Arima* coef.default* coef.listof*

[5] coef.nls* coef.summary.nls*

Non-visible functions are asterisked

In this example there are six methods, none of which can be seen by typing its name. We can
read these by either of

> getAnywhere("coef.aov")

A single object matching ’coef.aov’ was found

It was found in the following places

registered S3 method for coef from namespace stats

namespace:stats

with value

function (object, ...)

{

z <- object$coef

z[!is.na(z)]

}
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> getS3method("coef", "aov")

function (object, ...)

{

z <- object$coef

z[!is.na(z)]

}

A function named gen.cl will be invoked by the generic gen for class cl, so do not name
functions in this style unless they are intended to be methods.

The reader is referred to the R Language Definition for a more complete discussion of this
mechanism.
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11 Statistical models in R

This section presumes the reader has some familiarity with statistical methodology, in particular
with regression analysis and the analysis of variance. Later we make some rather more ambitious
presumptions, namely that something is known about generalized linear models and nonlinear
regression.

The requirements for fitting statistical models are sufficiently well defined to make it possible
to construct general tools that apply in a broad spectrum of problems.

R provides an interlocking suite of facilities that make fitting statistical models very simple.
As we mention in the introduction, the basic output is minimal, and one needs to ask for the
details by calling extractor functions.

11.1 Defining statistical models; formulae

The template for a statistical model is a linear regression model with independent, homoscedastic
errors

yi =
p∑

j=0

βjxij + ei, ei ∼ NID(0, σ2), i = 1, . . . , n

In matrix terms this would be written

y = Xβ + e

where the y is the response vector, X is the model matrix or design matrix and has columns
x0, x1, . . . , xp, the determining variables. Very often x0 will be a column of ones defining an
intercept term.

Examples

Before giving a formal specification, a few examples may usefully set the picture.

Suppose y, x, x0, x1, x2, . . . are numeric variables, X is a matrix and A, B, C, . . . are factors.
The following formulae on the left side below specify statistical models as described on the right.

y ~ x

y ~ 1 + x Both imply the same simple linear regression model of y on x. The first has an
implicit intercept term, and the second an explicit one.

y ~ 0 + x

y ~ -1 + x

y ~ x - 1 Simple linear regression of y on x through the origin (that is, without an intercept
term).

log(y) ~ x1 + x2

Multiple regression of the transformed variable, log(y), on x1 and x2 (with an
implicit intercept term).

y ~ poly(x,2)

y ~ 1 + x + I(x^2)

Polynomial regression of y on x of degree 2. The first form uses orthogonal polyno-
mials, and the second uses explicit powers, as basis.

y ~ X + poly(x,2)

Multiple regression y with model matrix consisting of the matrix X as well as
polynomial terms in x to degree 2.
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y ~ A Single classification analysis of variance model of y, with classes determined by A.

y ~ A + x Single classification analysis of covariance model of y, with classes determined by
A, and with covariate x.

y ~ A*B

y ~ A + B + A:B

y ~ B %in% A

y ~ A/B Two factor non-additive model of y on A and B. The first two specify the same
crossed classification and the second two specify the same nested classification. In
abstract terms all four specify the same model subspace.

y ~ (A + B + C)^2

y ~ A*B*C - A:B:C

Three factor experiment but with a model containing main effects and two factor
interactions only. Both formulae specify the same model.

y ~ A * x

y ~ A/x

y ~ A/(1 + x) - 1

Separate simple linear regression models of y on x within the levels of A, with
different codings. The last form produces explicit estimates of as many different
intercepts and slopes as there are levels in A.

y ~ A*B + Error(C)

An experiment with two treatment factors, A and B, and error strata determined
by factor C. For example a split plot experiment, with whole plots (and hence also
subplots), determined by factor C.

The operator ~ is used to define a model formula in R. The form, for an ordinary linear
model, is

response ~ op_1 term_1 op_2 term_2 op_3 term_3 ...

where

response is a vector or matrix, (or expression evaluating to a vector or matrix) defining the
response variable(s).

op i is an operator, either + or -, implying the inclusion or exclusion of a term in the
model, (the first is optional).

term i is either

• a vector or matrix expression, or 1,

• a factor, or

• a formula expression consisting of factors, vectors or matrices connected by
formula operators.

In all cases each term defines a collection of columns either to be added to or
removed from the model matrix. A 1 stands for an intercept column and is by
default included in the model matrix unless explicitly removed.

The formula operators are similar in effect to the Wilkinson and Rogers notation used by
such programs as Glim and Genstat. One inevitable change is that the operator ‘.’ becomes ‘:’
since the period is a valid name character in R.

The notation is summarized below (based on Chambers & Hastie, 1992, p.29):

Y ~ M Y is modeled as M.

M_1 + M_2 Include M 1 and M 2.
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M_1 - M_2 Include M 1 leaving out terms of M 2.

M_1 : M_2 The tensor product ofM 1 andM 2. If both terms are factors, then the “subclasses”
factor.

M_1 %in% M_2

Similar to M_1:M_2, but with a different coding.

M_1 * M_2 M_1 + M_2 + M_1:M_2.

M_1 / M_2 M_1 + M_2 %in% M_1.

M^n All terms in M together with “interactions” up to order n

I(M) Insulate M. Inside M all operators have their normal arithmetic meaning, and that
term appears in the model matrix.

Note that inside the parentheses that usually enclose function arguments all operators have
their normal arithmetic meaning. The function I() is an identity function used to allow terms
in model formulae to be defined using arithmetic operators.

Note particularly that the model formulae specify the columns of the model matrix, the
specification of the parameters being implicit. This is not the case in other contexts, for example
in specifying nonlinear models.

11.1.1 Contrasts

We need at least some idea how the model formulae specify the columns of the model matrix.
This is easy if we have continuous variables, as each provides one column of the model matrix
(and the intercept will provide a column of ones if included in the model).

What about a k-level factor A? The answer differs for unordered and ordered factors. For
unordered factors k − 1 columns are generated for the indicators of the second, . . . , kth levels
of the factor. (Thus the implicit parameterization is to contrast the response at each level with
that at the first.) For ordered factors the k − 1 columns are the orthogonal polynomials on
1, . . . , k, omitting the constant term.

Although the answer is already complicated, it is not the whole story. First, if the intercept
is omitted in a model that contains a factor term, the first such term is encoded into k columns
giving the indicators for all the levels. Second, the whole behavior can be changed by the
options setting for contrasts. The default setting in R is

options(contrasts = c("contr.treatment", "contr.poly"))

The main reason for mentioning this is that R and S have different defaults for unordered factors,
S using Helmert contrasts. So if you need to compare your results to those of a textbook or
paper which used S-Plus, you will need to set

options(contrasts = c("contr.helmert", "contr.poly"))

This is a deliberate difference, as treatment contrasts (R’s default) are thought easier for new-
comers to interpret.

We have still not finished, as the contrast scheme to be used can be set for each term in the
model using the functions contrasts and C.

We have not yet considered interaction terms: these generate the products of the columns
introduced for their component terms.

Although the details are complicated, model formulae in R will normally generate the models
that an expert statistician would expect, provided that marginality is preserved. Fitting, for
example, a model with an interaction but not the corresponding main effects will in general lead
to surprising results, and is for experts only.
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11.2 Linear models

The basic function for fitting ordinary multiple models is lm(), and a streamlined version of the
call is as follows:

> fitted.model <- lm(formula, data = data.frame)

For example

> fm2 <- lm(y ~ x1 + x2, data = production)

would fit a multiple regression model of y on x1 and x2 (with implicit intercept term).

The important (but technically optional) parameter data = production specifies that any
variables needed to construct the model should come first from the production data frame.
This is the case regardless of whether data frame production has been attached on the search
path or not.

11.3 Generic functions for extracting model information

The value of lm() is a fitted model object; technically a list of results of class "lm". Information
about the fitted model can then be displayed, extracted, plotted and so on by using generic
functions that orient themselves to objects of class "lm". These include

add1 deviance formula predict step

alias drop1 kappa print summary

anova effects labels proj vcov

coef family plot residuals

A brief description of the most commonly used ones is given below.

anova(object_1, object_2)

Compare a submodel with an outer model and produce an analysis of variance table.

coef(object)

Extract the regression coefficient (matrix).

Long form: coefficients(object).

deviance(object)

Residual sum of squares, weighted if appropriate.

formula(object)

Extract the model formula.

plot(object)

Produce four plots, showing residuals, fitted values and some diagnostics.

predict(object, newdata=data.frame)

The data frame supplied must have variables specified with the same labels as the
original. The value is a vector or matrix of predicted values corresponding to the
determining variable values in data.frame.

print(object)

Print a concise version of the object. Most often used implicitly.

residuals(object)

Extract the (matrix of) residuals, weighted as appropriate.

Short form: resid(object).

step(object)

Select a suitable model by adding or dropping terms and preserving hierarchies. The
model with the smallest value of AIC (Akaike’s An Information Criterion) discovered
in the stepwise search is returned.
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summary(object)

Print a comprehensive summary of the results of the regression analysis.

vcov(object)

Returns the variance-covariance matrix of the main parameters of a fitted model
object.

11.4 Analysis of variance and model comparison

The model fitting function aov(formula, data=data.frame) operates at the simplest level in
a very similar way to the function lm(), and most of the generic functions listed in the table in
Section 11.3 [Generic functions for extracting model information], page 54 apply.

It should be noted that in addition aov() allows an analysis of models with multiple error
strata such as split plot experiments, or balanced incomplete block designs with recovery of
inter-block information. The model formula

response ~ mean.formula + Error(strata.formula)

specifies a multi-stratum experiment with error strata defined by the strata.formula. In the
simplest case, strata.formula is simply a factor, when it defines a two strata experiment, namely
between and within the levels of the factor.

For example, with all determining variables factors, a model formula such as that in:

> fm <- aov(yield ~ v + n*p*k + Error(farms/blocks), data=farm.data)

would typically be used to describe an experiment with mean model v + n*p*k and three error
strata, namely “between farms”, “within farms, between blocks” and “within blocks”.

11.4.1 ANOVA tables

Note also that the analysis of variance table (or tables) are for a sequence of fitted models.
The sums of squares shown are the decrease in the residual sums of squares resulting from an
inclusion of that term in the model at that place in the sequence. Hence only for orthogonal
experiments will the order of inclusion be inconsequential.

For multistratum experiments the procedure is first to project the response onto the error
strata, again in sequence, and to fit the mean model to each projection. For further details, see
Chambers & Hastie (1992).

A more flexible alternative to the default full ANOVA table is to compare two or more models
directly using the anova() function.

> anova(fitted.model.1, fitted.model.2, ...)

The display is then an ANOVA table showing the differences between the fitted models when
fitted in sequence. The fitted models being compared would usually be an hierarchical sequence,
of course. This does not give different information to the default, but rather makes it easier to
comprehend and control.

11.5 Updating fitted models

The update() function is largely a convenience function that allows a model to be fitted that
differs from one previously fitted usually by just a few additional or removed terms. Its form is

> new.model <- update(old.model, new.formula)

In the new.formula the special name consisting of a period, ‘.’, only, can be used to stand
for “the corresponding part of the old model formula”. For example,

> fm05 <- lm(y ~ x1 + x2 + x3 + x4 + x5, data = production)

> fm6 <- update(fm05, . ~ . + x6)

> smf6 <- update(fm6, sqrt(.) ~ .)
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would fit a five variate multiple regression with variables (presumably) from the data frame
production, fit an additional model including a sixth regressor variable, and fit a variant on
the model where the response had a square root transform applied.

Note especially that if the data= argument is specified on the original call to the model
fitting function, this information is passed on through the fitted model object to update() and
its allies.

The name ‘.’ can also be used in other contexts, but with slightly different meaning. For
example

> fmfull <- lm(y ~ . , data = production)

would fit a model with response y and regressor variables all other variables in the data frame
production.

Other functions for exploring incremental sequences of models are add1(), drop1() and
step(). The names of these give a good clue to their purpose, but for full details see the on-line
help.

11.6 Generalized linear models

Generalized linear modeling is a development of linear models to accommodate both non-normal
response distributions and transformations to linearity in a clean and straightforward way. A
generalized linear model may be described in terms of the following sequence of assumptions:

• There is a response, y, of interest and stimulus variables x1, x2, . . . , whose values influence
the distribution of the response.

• The stimulus variables influence the distribution of y through a single linear function, only.
This linear function is called the linear predictor, and is usually written

η = β1x1 + β2x2 + · · ·+ βpxp,

hence xi has no influence on the distribution of y if and only if βi = 0.

• The distribution of y is of the form

fY (y;µ, ϕ) = exp

[
A

ϕ
{yλ(µ)− γ (λ(µ))}+ τ(y, ϕ)

]

where ϕ is a scale parameter (possibly known), and is constant for all observations, A
represents a prior weight, assumed known but possibly varying with the observations, and
µ is the mean of y. So it is assumed that the distribution of y is determined by its mean
and possibly a scale parameter as well.

• The mean, µ, is a smooth invertible function of the linear predictor:

µ = m(η), η = m−1(µ) = `(µ)

and this inverse function, `(), is called the link function.

These assumptions are loose enough to encompass a wide class of models useful in statistical
practice, but tight enough to allow the development of a unified methodology of estimation and
inference, at least approximately. The reader is referred to any of the current reference works
on the subject for full details, such as McCullagh & Nelder (1989) or Dobson (1990).
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11.6.1 Families

The class of generalized linear models handled by facilities supplied in R includes gaussian,
binomial, poisson, inverse gaussian and gamma response distributions and also quasi-likelihood
models where the response distribution is not explicitly specified. In the latter case the variance
function must be specified as a function of the mean, but in other cases this function is implied
by the response distribution.

Each response distribution admits a variety of link functions to connect the mean with the
linear predictor. Those automatically available are shown in the following table:

Family name Link functions
binomial logit, probit, log, cloglog
gaussian identity, log, inverse
Gamma identity, inverse, log
inverse.gaussian 1/mu^2, identity, inverse, log
poisson identity, log, sqrt
quasi logit, probit, cloglog, identity, inverse,

log, 1/mu^2, sqrt

The combination of a response distribution, a link function and various other pieces of infor-
mation that are needed to carry out the modeling exercise is called the family of the generalized
linear model.

11.6.2 The glm() function

Since the distribution of the response depends on the stimulus variables through a single linear
function only, the same mechanism as was used for linear models can still be used to specify the
linear part of a generalized model. The family has to be specified in a different way.

The R function to fit a generalized linear model is glm() which uses the form

> fitted.model <- glm(formula, family=family.generator, data=data.frame)

The only new feature is the family.generator, which is the instrument by which the family is
described. It is the name of a function that generates a list of functions and expressions that
together define and control the model and estimation process. Although this may seem a little
complicated at first sight, its use is quite simple.

The names of the standard, supplied family generators are given under “Family Name” in
the table in Section 11.6.1 [Families], page 57. Where there is a choice of links, the name of the
link may also be supplied with the family name, in parentheses as a parameter. In the case of
the quasi family, the variance function may also be specified in this way.

Some examples make the process clear.

The gaussian family

A call such as

> fm <- glm(y ~ x1 + x2, family = gaussian, data = sales)

achieves the same result as

> fm <- lm(y ~ x1+x2, data=sales)

but much less efficiently. Note how the gaussian family is not automatically provided with a
choice of links, so no parameter is allowed. If a problem requires a gaussian family with a
nonstandard link, this can usually be achieved through the quasi family, as we shall see later.

The binomial family

Consider a small, artificial example, from Silvey (1970).
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On the Aegean island of Kalythos the male inhabitants suffer from a congenital eye disease,
the effects of which become more marked with increasing age. Samples of islander males of
various ages were tested for blindness and the results recorded. The data is shown below:

Age: 20 35 45 55 70
No. tested: 50 50 50 50 50
No. blind: 6 17 26 37 44

The problem we consider is to fit both logistic and probit models to this data, and to estimate
for each model the LD50, that is the age at which the chance of blindness for a male inhabitant
is 50%.

If y is the number of blind at age x and n the number tested, both models have the form

y ∼ B(n, F (β0 + β1x))

where for the probit case, F (z) = Φ(z) is the standard normal distribution function, and in the
logit case (the default), F (z) = ez/(1 + ez). In both cases the LD50 is

LD50 = −β0/β1

that is, the point at which the argument of the distribution function is zero.

The first step is to set the data up as a data frame

> kalythos <- data.frame(x = c(20,35,45,55,70), n = rep(50,5),

y = c(6,17,26,37,44))

To fit a binomial model using glm() there are three possibilities for the response:

• If the response is a vector it is assumed to hold binary data, and so must be a 0/1 vector.

• If the response is a two-column matrix it is assumed that the first column holds the number
of successes for the trial and the second holds the number of failures.

• If the response is a factor, its first level is taken as failure (0) and all other levels as ‘success’
(1).

Here we need the second of these conventions, so we add a matrix to our data frame:

> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)

To fit the models we use

> fmp <- glm(Ymat ~ x, family = binomial(link=probit), data = kalythos)

> fml <- glm(Ymat ~ x, family = binomial, data = kalythos)

Since the logit link is the default the parameter may be omitted on the second call. To see
the results of each fit we could use

> summary(fmp)

> summary(fml)

Both models fit (all too) well. To find the LD50 estimate we can use a simple function:

> ld50 <- function(b) -b[1]/b[2]

> ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fml)); c(ldp, ldl)

The actual estimates from this data are 43.663 years and 43.601 years respectively.

Poisson models

With the Poisson family the default link is the log, and in practice the major use of this family
is to fit surrogate Poisson log-linear models to frequency data, whose actual distribution is often
multinomial. This is a large and important subject we will not discuss further here. It even
forms a major part of the use of non-gaussian generalized models overall.

Occasionally genuinely Poisson data arises in practice and in the past it was often analyzed
as gaussian data after either a log or a square-root transformation. As a graceful alternative to
the latter, a Poisson generalized linear model may be fitted as in the following example:
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> fmod <- glm(y ~ A + B + x, family = poisson(link=sqrt),

data = worm.counts)

Quasi-likelihood models

For all families the variance of the response will depend on the mean and will have the scale
parameter as a multiplier. The form of dependence of the variance on the mean is a characteristic
of the response distribution; for example for the poisson distribution Var[y] = µ.

For quasi-likelihood estimation and inference the precise response distribution is not specified,
but rather only a link function and the form of the variance function as it depends on the
mean. Since quasi-likelihood estimation uses formally identical techniques to those for the
gaussian distribution, this family provides a way of fitting gaussian models with non-standard
link functions or variance functions, incidentally.

For example, consider fitting the non-linear regression

y =
θ1z1
z2 − θ2

+ e

which may be written alternatively as

y =
1

β1x1 + β2x2

+ e

where x1 = z2/z1, x2 = −1/z1, β1 = 1/θ1 and β2 = θ2/θ1. Supposing a suitable data frame to
be set up we could fit this non-linear regression as

> nlfit <- glm(y ~ x1 + x2 - 1,

family = quasi(link=inverse, variance=constant),

data = biochem)

The reader is referred to the manual and the help document for further information, as
needed.

11.7 Nonlinear least squares and maximum likelihood models

Certain forms of nonlinear model can be fitted by Generalized Linear Models (glm()). But in the
majority of cases we have to approach the nonlinear curve fitting problem as one of nonlinear
optimization. R’s nonlinear optimization routines are optim(), nlm() and nlminb(), which
provide the functionality (and more) of S-Plus’s ms() and nlminb(). We seek the parameter
values that minimize some index of lack-of-fit, and they do this by trying out various parameter
values iteratively. Unlike linear regression for example, there is no guarantee that the procedure
will converge on satisfactory estimates. All the methods require initial guesses about what
parameter values to try, and convergence may depend critically upon the quality of the starting
values.

11.7.1 Least squares

One way to fit a nonlinear model is by minimizing the sum of the squared errors (SSE) or
residuals. This method makes sense if the observed errors could have plausibly arisen from a
normal distribution.

Here is an example from Bates & Watts (1988), page 51. The data are:

> x <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56,

1.10, 1.10)

> y <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)

The fit criterion to be minimized is:
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> fn <- function(p) sum((y - (p[1] * x)/(p[2] + x))^2)

In order to do the fit we need initial estimates of the parameters. One way to find sensible
starting values is to plot the data, guess some parameter values, and superimpose the model
curve using those values.

> plot(x, y)

> xfit <- seq(.02, 1.1, .05)

> yfit <- 200 * xfit/(0.1 + xfit)

> lines(spline(xfit, yfit))

We could do better, but these starting values of 200 and 0.1 seem adequate. Now do the fit:

> out <- nlm(fn, p = c(200, 0.1), hessian = TRUE)

After the fitting, out$minimum is the SSE, and out$estimate are the least squares estimates
of the parameters. To obtain the approximate standard errors (SE) of the estimates we do:

> sqrt(diag(2*out$minimum/(length(y) - 2) * solve(out$hessian)))

The 2 which is subtracted in the line above represents the number of parameters. A 95%
confidence interval would be the parameter estimate ± 1.96 SE. We can superimpose the least
squares fit on a new plot:

> plot(x, y)

> xfit <- seq(.02, 1.1, .05)

> yfit <- 212.68384222 * xfit/(0.06412146 + xfit)

> lines(spline(xfit, yfit))

The standard package stats provides much more extensive facilities for fitting non-linear
models by least squares. The model we have just fitted is the Michaelis-Menten model, so we
can use

> df <- data.frame(x=x, y=y)

> fit <- nls(y ~ SSmicmen(x, Vm, K), df)

> fit

Nonlinear regression model

model: y ~ SSmicmen(x, Vm, K)

data: df

Vm K

212.68370711 0.06412123

residual sum-of-squares: 1195.449

> summary(fit)

Formula: y ~ SSmicmen(x, Vm, K)

Parameters:

Estimate Std. Error t value Pr(>|t|)

Vm 2.127e+02 6.947e+00 30.615 3.24e-11

K 6.412e-02 8.281e-03 7.743 1.57e-05

Residual standard error: 10.93 on 10 degrees of freedom

Correlation of Parameter Estimates:

Vm

K 0.7651

11.7.2 Maximum likelihood

Maximum likelihood is a method of nonlinear model fitting that applies even if the errors are
not normal. The method finds the parameter values which maximize the log likelihood, or

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 66 of 105



Chapter 11: Statistical models in R 61

equivalently which minimize the negative log-likelihood. Here is an example from Dobson (1990),
pp. 108–111. This example fits a logistic model to dose-response data, which clearly could also
be fit by glm(). The data are:

> x <- c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113,

1.8369, 1.8610, 1.8839)

> y <- c( 6, 13, 18, 28, 52, 53, 61, 60)

> n <- c(59, 60, 62, 56, 63, 59, 62, 60)

The negative log-likelihood to minimize is:

> fn <- function(p)

sum( - (y*(p[1]+p[2]*x) - n*log(1+exp(p[1]+p[2]*x))

+ log(choose(n, y)) ))

We pick sensible starting values and do the fit:

> out <- nlm(fn, p = c(-50,20), hessian = TRUE)

After the fitting, out$minimum is the negative log-likelihood, and out$estimate are the maxi-
mum likelihood estimates of the parameters. To obtain the approximate SEs of the estimates
we do:

> sqrt(diag(solve(out$hessian)))

A 95% confidence interval would be the parameter estimate ± 1.96 SE.

11.8 Some non-standard models

We conclude this chapter with just a brief mention of some of the other facilities available in R
for special regression and data analysis problems.

• Mixed models. The recommended nlme (https://CRAN.R-project.org/package=nlme)
package provides functions lme() and nlme() for linear and non-linear mixed-effects models,
that is linear and non-linear regressions in which some of the coefficients correspond to
random effects. These functions make heavy use of formulae to specify the models.

• Local approximating regressions. The loess() function fits a nonparametric regression by
using a locally weighted regression. Such regressions are useful for highlighting a trend in
messy data or for data reduction to give some insight into a large data set.

Function loess is in the standard package stats, together with code for projection pursuit
regression.

• Robust regression. There are several functions available for fitting regression models in a
way resistant to the influence of extreme outliers in the data. Function lqs in the recom-
mended package MASS (https://CRAN.R-project.org/package=MASS) provides state-
of-art algorithms for highly-resistant fits. Less resistant but statistically more efficient
methods are available in packages, for example function rlm in package MASS (https://
CRAN.R-project.org/package=MASS).

• Additive models. This technique aims to construct a regression function from smooth addi-
tive functions of the determining variables, usually one for each determining variable. Func-
tions avas and ace in package acepack (https://CRAN.R-project.org/package=acepack)
and functions bruto and mars in package mda (https: / / CRAN . R-project . org /
package=mda) provide some examples of these techniques in user-contributed packages to
R. An extension is Generalized Additive Models, implemented in user-contributed pack-
ages gam (https://CRAN.R-project.org/package=gam) and mgcv (https://CRAN.
R-project.org/package=mgcv).

• Tree-based models. Rather than seek an explicit global linear model for prediction or
interpretation, tree-based models seek to bifurcate the data, recursively, at critical points
of the determining variables in order to partition the data ultimately into groups that are
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as homogeneous as possible within, and as heterogeneous as possible between. The results
often lead to insights that other data analysis methods tend not to yield.

Models are again specified in the ordinary linear model form. The model fitting function is
tree(), but many other generic functions such as plot() and text() are well adapted to
displaying the results of a tree-based model fit in a graphical way.

Tree models are available in R via the user-contributed packages rpart (https: / /
CRAN . R-project . org / package=rpart) and tree (https: / / CRAN . R-project . org /
package=tree).
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12 Graphical procedures

Graphical facilities are an important and extremely versatile component of the R environment.
It is possible to use the facilities to display a wide variety of statistical graphs and also to build
entirely new types of graph.

The graphics facilities can be used in both interactive and batch modes, but in most cases,
interactive use is more productive. Interactive use is also easy because at startup time R initiates
a graphics device driver which opens a special graphics window for the display of interactive
graphics. Although this is done automatically, it may useful to know that the command used is
X11() under UNIX, windows() under Windows and quartz() under OS X. A new device can
always be opened by dev.new().

Once the device driver is running, R plotting commands can be used to produce a variety of
graphical displays and to create entirely new kinds of display.

Plotting commands are divided into three basic groups:

• High-level plotting functions create a new plot on the graphics device, possibly with axes,
labels, titles and so on.

• Low-level plotting functions add more information to an existing plot, such as extra points,
lines and labels.

• Interactive graphics functions allow you interactively add information to, or extract infor-
mation from, an existing plot, using a pointing device such as a mouse.

In addition, R maintains a list of graphical parameters which can be manipulated to customize
your plots.

This manual only describes what are known as ‘base’ graphics. A separate graphics sub-
system in package grid coexists with base – it is more powerful but harder to use. There is a
recommended package lattice (https://CRAN.R-project.org/package=lattice) which builds
on grid and provides ways to produce multi-panel plots akin to those in the Trellis system in S.

12.1 High-level plotting commands

High-level plotting functions are designed to generate a complete plot of the data passed as ar-
guments to the function. Where appropriate, axes, labels and titles are automatically generated
(unless you request otherwise.) High-level plotting commands always start a new plot, erasing
the current plot if necessary.

12.1.1 The plot() function

One of the most frequently used plotting functions in R is the plot() function. This is a generic
function: the type of plot produced is dependent on the type or class of the first argument.

plot(x, y)

plot(xy) If x and y are vectors, plot(x, y) produces a scatterplot of y against x. The same
effect can be produced by supplying one argument (second form) as either a list
containing two elements x and y or a two-column matrix.

plot(x) If x is a time series, this produces a time-series plot. If x is a numeric vector, it
produces a plot of the values in the vector against their index in the vector. If x
is a complex vector, it produces a plot of imaginary versus real parts of the vector
elements.

plot(f)

plot(f, y)

f is a factor object, y is a numeric vector. The first form generates a bar plot of f ;
the second form produces boxplots of y for each level of f.
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plot(df)

plot(~ expr)

plot(y ~ expr)

df is a data frame, y is any object, expr is a list of object names separated by ‘+’
(e.g., a + b + c). The first two forms produce distributional plots of the variables in
a data frame (first form) or of a number of named objects (second form). The third
form plots y against every object named in expr.

12.1.2 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If X is a numeric matrix
or data frame, the command

> pairs(X)

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is,
every column of X is plotted against every other column of X and the resulting n(n − 1) plots
are arranged in a matrix with plot scales constant over the rows and columns of the matrix.

When three or four variables are involved a coplot may be more enlightening. If a and b are
numeric vectors and c is a numeric vector or factor object (all of the same length), then the
command

> coplot(a ~ b | c)

produces a number of scatterplots of a against b for given values of c. If c is a factor, this
simply means that a is plotted against b for every level of c. When c is numeric, it is divided
into a number of conditioning intervals and for each interval a is plotted against b for values of c
within the interval. The number and position of intervals can be controlled with given.values=

argument to coplot()—the function co.intervals() is useful for selecting intervals. You can
also use two given variables with a command like

> coplot(a ~ b | c + d)

which produces scatterplots of a against b for every joint conditioning interval of c and d.

The coplot() and pairs() function both take an argument panel= which can be used to
customize the type of plot which appears in each panel. The default is points() to produce a
scatterplot but by supplying some other low-level graphics function of two vectors x and y as
the value of panel= you can produce any type of plot you wish. An example panel function
useful for coplots is panel.smooth().

12.1.3 Display graphics

Other high-level graphics functions produce different types of plots. Some examples are:

qqnorm(x)

qqline(x)

qqplot(x, y)

Distribution-comparison plots. The first form plots the numeric vector x against the
expected Normal order scores (a normal scores plot) and the second adds a straight
line to such a plot by drawing a line through the distribution and data quartiles.
The third form plots the quantiles of x against those of y to compare their respective
distributions.

hist(x)

hist(x, nclass=n)

hist(x, breaks=b, ...)

Produces a histogram of the numeric vector x. A sensible number of classes is
usually chosen, but a recommendation can be given with the nclass= argument.
Alternatively, the breakpoints can be specified exactly with the breaks= argument.
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If the probability=TRUE argument is given, the bars represent relative frequencies
divided by bin width instead of counts.

dotchart(x, ...)

Constructs a dotchart of the data in x. In a dotchart the y-axis gives a labelling
of the data in x and the x-axis gives its value. For example it allows easy visual
selection of all data entries with values lying in specified ranges.

image(x, y, z, ...)

contour(x, y, z, ...)

persp(x, y, z, ...)

Plots of three variables. The image plot draws a grid of rectangles using different
colours to represent the value of z, the contour plot draws contour lines to represent
the value of z, and the persp plot draws a 3D surface.

12.1.4 Arguments to high-level plotting functions

There are a number of arguments which may be passed to high-level graphics functions, as
follows:

add=TRUE Forces the function to act as a low-level graphics function, superimposing the plot
on the current plot (some functions only).

axes=FALSE

Suppresses generation of axes—useful for adding your own custom axes with the
axis() function. The default, axes=TRUE, means include axes.

log="x"

log="y"

log="xy" Causes the x, y or both axes to be logarithmic. This will work for many, but not
all, types of plot.

type= The type= argument controls the type of plot produced, as follows:

type="p" Plot individual points (the default)

type="l" Plot lines

type="b" Plot points connected by lines (both)

type="o" Plot points overlaid by lines

type="h" Plot vertical lines from points to the zero axis (high-density)

type="s"

type="S" Step-function plots. In the first form, the top of the vertical defines the
point; in the second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default) and the
coordinate system is set up according to the data. Ideal for creating
plots with subsequent low-level graphics functions.

xlab=string

ylab=string

Axis labels for the x and y axes. Use these arguments to change the default labels,
usually the names of the objects used in the call to the high-level plotting function.

main=string

Figure title, placed at the top of the plot in a large font.

sub=string

Sub-title, placed just below the x-axis in a smaller font.
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12.2 Low-level plotting commands

Sometimes the high-level plotting functions don’t produce exactly the kind of plot you desire.
In this case, low-level plotting commands can be used to add extra information (such as points,
lines or text) to the current plot.

Some of the more useful low-level plotting functions are:

points(x, y)

lines(x, y)

Adds points or connected lines to the current plot. plot()’s type= argument can
also be passed to these functions (and defaults to "p" for points() and "l" for
lines().)

text(x, y, labels, ...)

Add text to a plot at points given by x, y. Normally labels is an integer or
character vector in which case labels[i] is plotted at point (x[i], y[i]). The
default is 1:length(x).

Note: This function is often used in the sequence

> plot(x, y, type="n"); text(x, y, names)

The graphics parameter type="n" suppresses the points but sets up the axes, and
the text() function supplies special characters, as specified by the character vector
names for the points.

abline(a, b)

abline(h=y)

abline(v=x)

abline(lm.obj)

Adds a line of slope b and intercept a to the current plot. h=y may be used to
specify y-coordinates for the heights of horizontal lines to go across a plot, and
v=x similarly for the x-coordinates for vertical lines. Also lm.obj may be list with a
coefficients component of length 2 (such as the result of model-fitting functions,)
which are taken as an intercept and slope, in that order.

polygon(x, y, ...)

Draws a polygon defined by the ordered vertices in (x, y) and (optionally) shade it
in with hatch lines, or fill it if the graphics device allows the filling of figures.

legend(x, y, legend, ...)

Adds a legend to the current plot at the specified position. Plotting characters, line
styles, colors etc., are identified with the labels in the character vector legend. At
least one other argument v (a vector the same length as legend) with the corre-
sponding values of the plotting unit must also be given, as follows:

legend( , fill=v)

Colors for filled boxes

legend( , col=v)

Colors in which points or lines will be drawn

legend( , lty=v)

Line styles

legend( , lwd=v)

Line widths

legend( , pch=v)

Plotting characters (character vector)
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title(main, sub)

Adds a title main to the top of the current plot in a large font and (optionally) a
sub-title sub at the bottom in a smaller font.

axis(side, ...)

Adds an axis to the current plot on the side given by the first argument (1 to 4,
counting clockwise from the bottom.) Other arguments control the positioning of
the axis within or beside the plot, and tick positions and labels. Useful for adding
custom axes after calling plot() with the axes=FALSE argument.

Low-level plotting functions usually require some positioning information (e.g., x and y co-
ordinates) to determine where to place the new plot elements. Coordinates are given in terms of
user coordinates which are defined by the previous high-level graphics command and are chosen
based on the supplied data.

Where x and y arguments are required, it is also sufficient to supply a single argument being
a list with elements named x and y. Similarly a matrix with two columns is also valid input.
In this way functions such as locator() (see below) may be used to specify positions on a plot
interactively.

12.2.1 Mathematical annotation

In some cases, it is useful to add mathematical symbols and formulae to a plot. This can be
achieved in R by specifying an expression rather than a character string in any one of text,
mtext, axis, or title. For example, the following code draws the formula for the Binomial
probability function:

> text(x, y, expression(paste(bgroup("(", atop(n, x), ")"), p^x, q^{n-x})))

More information, including a full listing of the features available can obtained from within
R using the commands:

> help(plotmath)

> example(plotmath)

> demo(plotmath)

12.2.2 Hershey vector fonts

It is possible to specify Hershey vector fonts for rendering text when using the text and contour

functions. There are three reasons for using the Hershey fonts:

• Hershey fonts can produce better output, especially on a computer screen, for rotated
and/or small text.

• Hershey fonts provide certain symbols that may not be available in the standard fonts. In
particular, there are zodiac signs, cartographic symbols and astronomical symbols.

• Hershey fonts provide cyrillic and japanese (Kana and Kanji) characters.

More information, including tables of Hershey characters can be obtained from within R
using the commands:

> help(Hershey)

> demo(Hershey)

> help(Japanese)

> demo(Japanese)

12.3 Interacting with graphics

R also provides functions which allow users to extract or add information to a plot using a
mouse. The simplest of these is the locator() function:
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locator(n, type)

Waits for the user to select locations on the current plot using the left mouse button.
This continues until n (default 512) points have been selected, or another mouse
button is pressed. The type argument allows for plotting at the selected points and
has the same effect as for high-level graphics commands; the default is no plotting.
locator() returns the locations of the points selected as a list with two components
x and y.

locator() is usually called with no arguments. It is particularly useful for interactively
selecting positions for graphic elements such as legends or labels when it is difficult to calculate
in advance where the graphic should be placed. For example, to place some informative text
near an outlying point, the command

> text(locator(1), "Outlier", adj=0)

may be useful. (locator() will be ignored if the current device, such as postscript does not
support interactive pointing.)

identify(x, y, labels)

Allow the user to highlight any of the points defined by x and y (using the left mouse
button) by plotting the corresponding component of labels nearby (or the index
number of the point if labels is absent). Returns the indices of the selected points
when another button is pressed.

Sometimes we want to identify particular points on a plot, rather than their positions. For
example, we may wish the user to select some observation of interest from a graphical display
and then manipulate that observation in some way. Given a number of (x, y) coordinates in two
numeric vectors x and y, we could use the identify() function as follows:

> plot(x, y)

> identify(x, y)

The identify() functions performs no plotting itself, but simply allows the user to move
the mouse pointer and click the left mouse button near a point. If there is a point near the
mouse pointer it will be marked with its index number (that is, its position in the x/y vectors)
plotted nearby. Alternatively, you could use some informative string (such as a case name) as a
highlight by using the labels argument to identify(), or disable marking altogether with the
plot = FALSE argument. When the process is terminated (see above), identify() returns the
indices of the selected points; you can use these indices to extract the selected points from the
original vectors x and y.

12.4 Using graphics parameters

When creating graphics, particularly for presentation or publication purposes, R’s defaults do
not always produce exactly that which is required. You can, however, customize almost every
aspect of the display using graphics parameters. R maintains a list of a large number of graphics
parameters which control things such as line style, colors, figure arrangement and text justifica-
tion among many others. Every graphics parameter has a name (such as ‘col’, which controls
colors,) and a value (a color number, for example.)

A separate list of graphics parameters is maintained for each active device, and each device has
a default set of parameters when initialized. Graphics parameters can be set in two ways: either
permanently, affecting all graphics functions which access the current device; or temporarily,
affecting only a single graphics function call.

12.4.1 Permanent changes: The par() function

The par() function is used to access and modify the list of graphics parameters for the current
graphics device.
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par() Without arguments, returns a list of all graphics parameters and their values for
the current device.

par(c("col", "lty"))

With a character vector argument, returns only the named graphics parameters
(again, as a list.)

par(col=4, lty=2)

With named arguments (or a single list argument), sets the values of the named
graphics parameters, and returns the original values of the parameters as a list.

Setting graphics parameters with the par() function changes the value of the parameters
permanently, in the sense that all future calls to graphics functions (on the current device) will
be affected by the new value. You can think of setting graphics parameters in this way as
setting “default” values for the parameters, which will be used by all graphics functions unless
an alternative value is given.

Note that calls to par() always affect the global values of graphics parameters, even when
par() is called from within a function. This is often undesirable behavior—usually we want to
set some graphics parameters, do some plotting, and then restore the original values so as not
to affect the user’s R session. You can restore the initial values by saving the result of par()
when making changes, and restoring the initial values when plotting is complete.

> oldpar <- par(col=4, lty=2)

. . . plotting commands . . .
> par(oldpar)

To save and restore all settable1 graphical parameters use

> oldpar <- par(no.readonly=TRUE)

. . . plotting commands . . .
> par(oldpar)

12.4.2 Temporary changes: Arguments to graphics functions

Graphics parameters may also be passed to (almost) any graphics function as named arguments.
This has the same effect as passing the arguments to the par() function, except that the changes
only last for the duration of the function call. For example:

> plot(x, y, pch="+")

produces a scatterplot using a plus sign as the plotting character, without changing the default
plotting character for future plots.

Unfortunately, this is not implemented entirely consistently and it is sometimes necessary to
set and reset graphics parameters using par().

12.5 Graphics parameters list

The following sections detail many of the commonly-used graphical parameters. The R help
documentation for the par() function provides a more concise summary; this is provided as a
somewhat more detailed alternative.

Graphics parameters will be presented in the following form:

name=value

A description of the parameter’s effect. name is the name of the parameter, that
is, the argument name to use in calls to par() or a graphics function. value is a
typical value you might use when setting the parameter.

Note that axes is not a graphics parameter but an argument to a few plot methods: see
xaxt and yaxt.

1 Some graphics parameters such as the size of the current device are for information only.
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12.5.1 Graphical elements

R plots are made up of points, lines, text and polygons (filled regions.) Graphical parameters
exist which control how these graphical elements are drawn, as follows:

pch="+" Character to be used for plotting points. The default varies with graphics drivers,
but it is usually ‘◦’. Plotted points tend to appear slightly above or below the
appropriate position unless you use "." as the plotting character, which produces
centered points.

pch=4 When pch is given as an integer between 0 and 25 inclusive, a specialized plotting
symbol is produced. To see what the symbols are, use the command

> legend(locator(1), as.character(0:25), pch = 0:25)

Those from 21 to 25 may appear to duplicate earlier symbols, but can be coloured
in different ways: see the help on points and its examples.

In addition, pch can be a character or a number in the range 32:255 representing
a character in the current font.

lty=2 Line types. Alternative line styles are not supported on all graphics devices (and
vary on those that do) but line type 1 is always a solid line, line type 0 is always invis-
ible, and line types 2 and onwards are dotted or dashed lines, or some combination
of both.

lwd=2 Line widths. Desired width of lines, in multiples of the “standard” line width.
Affects axis lines as well as lines drawn with lines(), etc. Not all devices support
this, and some have restrictions on the widths that can be used.

col=2 Colors to be used for points, lines, text, filled regions and images. A number from
the current palette (see ?palette) or a named colour.

col.axis

col.lab

col.main

col.sub The color to be used for axis annotation, x and y labels, main and sub-titles, re-
spectively.

font=2 An integer which specifies which font to use for text. If possible, device drivers
arrange so that 1 corresponds to plain text, 2 to bold face, 3 to italic, 4 to bold
italic and 5 to a symbol font (which include Greek letters).

font.axis

font.lab

font.main

font.sub The font to be used for axis annotation, x and y labels, main and sub-titles, respec-
tively.

adj=-0.1 Justification of text relative to the plotting position. 0 means left justify, 1 means
right justify and 0.5 means to center horizontally about the plotting position. The
actual value is the proportion of text that appears to the left of the plotting position,
so a value of -0.1 leaves a gap of 10% of the text width between the text and the
plotting position.

cex=1.5 Character expansion. The value is the desired size of text characters (including
plotting characters) relative to the default text size.
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cex.axis

cex.lab

cex.main

cex.sub The character expansion to be used for axis annotation, x and y labels, main and
sub-titles, respectively.

12.5.2 Axes and tick marks

Many of R’s high-level plots have axes, and you can construct axes yourself with the low-level
axis() graphics function. Axes have three main components: the axis line (line style controlled
by the lty graphics parameter), the tick marks (which mark off unit divisions along the axis
line) and the tick labels (which mark the units.) These components can be customized with the
following graphics parameters.

lab=c(5, 7, 12)

The first two numbers are the desired number of tick intervals on the x and y axes
respectively. The third number is the desired length of axis labels, in characters
(including the decimal point.) Choosing a too-small value for this parameter may
result in all tick labels being rounded to the same number!

las=1 Orientation of axis labels. 0 means always parallel to axis, 1 means always horizon-
tal, and 2 means always perpendicular to the axis.

mgp=c(3, 1, 0)

Positions of axis components. The first component is the distance from the axis
label to the axis position, in text lines. The second component is the distance to
the tick labels, and the final component is the distance from the axis position to the
axis line (usually zero). Positive numbers measure outside the plot region, negative
numbers inside.

tck=0.01 Length of tick marks, as a fraction of the size of the plotting region. When tck

is small (less than 0.5) the tick marks on the x and y axes are forced to be the
same size. A value of 1 gives grid lines. Negative values give tick marks outside the
plotting region. Use tck=0.01 and mgp=c(1,-1.5,0) for internal tick marks.

xaxs="r"

yaxs="i" Axis styles for the x and y axes, respectively. With styles "i" (internal) and "r"

(the default) tick marks always fall within the range of the data, however style "r"
leaves a small amount of space at the edges. (S has other styles not implemented in
R.)

12.5.3 Figure margins

A single plot in R is known as a figure and comprises a plot region surrounded by margins
(possibly containing axis labels, titles, etc.) and (usually) bounded by the axes themselves.
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A typical figure is

x

y
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−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−

mar[3]

Graphics parameters controlling figure layout include:

mai=c(1, 0.5, 0.5, 0)

Widths of the bottom, left, top and right margins, respectively, measured in inches.

mar=c(4, 2, 2, 1)

Similar to mai, except the measurement unit is text lines.

mar and mai are equivalent in the sense that setting one changes the value of the other. The
default values chosen for this parameter are often too large; the right-hand margin is rarely
needed, and neither is the top margin if no title is being used. The bottom and left margins
must be large enough to accommodate the axis and tick labels. Furthermore, the default is
chosen without regard to the size of the device surface: for example, using the postscript()

driver with the height=4 argument will result in a plot which is about 50% margin unless mar
or mai are set explicitly. When multiple figures are in use (see below) the margins are reduced,
however this may not be enough when many figures share the same page.
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12.5.4 Multiple figure environment

R allows you to create an n by m array of figures on a single page. Each figure has its own
margins, and the array of figures is optionally surrounded by an outer margin, as shown in the
following figure.

mfg=c(3,2,3,2)

omi[1]

omi[4]

mfrow=c(3,2)

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

oma[3]

The graphical parameters relating to multiple figures are as follows:

mfcol=c(3, 2)

mfrow=c(2, 4)

Set the size of a multiple figure array. The first value is the number of rows; the
second is the number of columns. The only difference between these two parameters
is that setting mfcol causes figures to be filled by column; mfrow fills by rows.

The layout in the Figure could have been created by setting mfrow=c(3,2); the
figure shows the page after four plots have been drawn.

Setting either of these can reduce the base size of symbols and text (controlled by
par("cex") and the pointsize of the device). In a layout with exactly two rows and
columns the base size is reduced by a factor of 0.83: if there are three or more of
either rows or columns, the reduction factor is 0.66.

mfg=c(2, 2, 3, 2)

Position of the current figure in a multiple figure environment. The first two numbers
are the row and column of the current figure; the last two are the number of rows
and columns in the multiple figure array. Set this parameter to jump between figures
in the array. You can even use different values for the last two numbers than the
true values for unequally-sized figures on the same page.

fig=c(4, 9, 1, 4)/10

Position of the current figure on the page. Values are the positions of the left, right,
bottom and top edges respectively, as a percentage of the page measured from the
bottom left corner. The example value would be for a figure in the bottom right of
the page. Set this parameter for arbitrary positioning of figures within a page. If
you want to add a figure to a current page, use new=TRUE as well (unlike S).

oma=c(2, 0, 3, 0)

omi=c(0, 0, 0.8, 0)

Size of outer margins. Like mar and mai, the first measures in text lines and the
second in inches, starting with the bottom margin and working clockwise.
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Outer margins are particularly useful for page-wise titles, etc. Text can be added to the outer
margins with the mtext() function with argument outer=TRUE. There are no outer margins by
default, however, so you must create them explicitly using oma or omi.

More complicated arrangements of multiple figures can be produced by the split.screen()
and layout() functions, as well as by the grid and lattice (https://CRAN.R-project.org/
package=lattice) packages.

12.6 Device drivers

R can generate graphics (of varying levels of quality) on almost any type of display or printing
device. Before this can begin, however, R needs to be informed what type of device it is dealing
with. This is done by starting a device driver. The purpose of a device driver is to convert
graphical instructions from R (“draw a line,” for example) into a form that the particular device
can understand.

Device drivers are started by calling a device driver function. There is one such function
for every device driver: type help(Devices) for a list of them all. For example, issuing the
command

> postscript()

causes all future graphics output to be sent to the printer in PostScript format. Some commonly-
used device drivers are:

X11() For use with the X11 window system on Unix-alikes

windows()

For use on Windows

quartz() For use on OS X

postscript()

For printing on PostScript printers, or creating PostScript graphics files.

pdf() Produces a PDF file, which can also be included into PDF files.

png() Produces a bitmap PNG file. (Not always available: see its help page.)

jpeg() Produces a bitmap JPEG file, best used for image plots. (Not always available: see
its help page.)

When you have finished with a device, be sure to terminate the device driver by issuing the
command

> dev.off()

This ensures that the device finishes cleanly; for example in the case of hardcopy devices
this ensures that every page is completed and has been sent to the printer. (This will happen
automatically at the normal end of a session.)

12.6.1 PostScript diagrams for typeset documents

By passing the file argument to the postscript() device driver function, you may store the
graphics in PostScript format in a file of your choice. The plot will be in landscape orientation
unless the horizontal=FALSE argument is given, and you can control the size of the graphic with
the width and height arguments (the plot will be scaled as appropriate to fit these dimensions.)
For example, the command

> postscript("file.ps", horizontal=FALSE, height=5, pointsize=10)

will produce a file containing PostScript code for a figure five inches high, perhaps for inclusion
in a document. It is important to note that if the file named in the command already exists,
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it will be overwritten. This is the case even if the file was only created earlier in the same R
session.

Many usages of PostScript output will be to incorporate the figure in another document. This
works best when encapsulated PostScript is produced: R always produces conformant output,
but only marks the output as such when the onefile=FALSE argument is supplied. This unusual
notation stems from S-compatibility: it really means that the output will be a single page (which
is part of the EPSF specification). Thus to produce a plot for inclusion use something like

> postscript("plot1.eps", horizontal=FALSE, onefile=FALSE,

height=8, width=6, pointsize=10)

12.6.2 Multiple graphics devices

In advanced use of R it is often useful to have several graphics devices in use at the same time.
Of course only one graphics device can accept graphics commands at any one time, and this is
known as the current device. When multiple devices are open, they form a numbered sequence
with names giving the kind of device at any position.

The main commands used for operating with multiple devices, and their meanings are as
follows:

X11() [UNIX]

windows()

win.printer()

win.metafile()

[Windows]

quartz() [OS X]

postscript()

pdf()

png()

jpeg()

tiff()

bitmap()

... Each new call to a device driver function opens a new graphics device, thus extending
by one the device list. This device becomes the current device, to which graphics
output will be sent.

dev.list()

Returns the number and name of all active devices. The device at position 1 on the
list is always the null device which does not accept graphics commands at all.

dev.next()

dev.prev()

Returns the number and name of the graphics device next to, or previous to the
current device, respectively.

dev.set(which=k)

Can be used to change the current graphics device to the one at position k of the
device list. Returns the number and label of the device.

dev.off(k)

Terminate the graphics device at point k of the device list. For some devices, such as
postscript devices, this will either print the file immediately or correctly complete
the file for later printing, depending on how the device was initiated.
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dev.copy(device, ..., which=k)

dev.print(device, ..., which=k)

Make a copy of the device k. Here device is a device function, such as postscript,
with extra arguments, if needed, specified by ‘...’. dev.print is similar, but the
copied device is immediately closed, so that end actions, such as printing hardcopies,
are immediately performed.

graphics.off()

Terminate all graphics devices on the list, except the null device.

12.7 Dynamic graphics

R does not have builtin capabilities for dynamic or interactive graphics, e.g. rotating point
clouds or to “brushing” (interactively highlighting) points. However, extensive dynamic graphics
facilities are available in the system GGobi by Swayne, Cook and Buja available from

http://www.ggobi.org/

and these can be accessed from R via the package rggobi (https://CRAN.R-project.org/
package=rggobi), described at http://www.ggobi.org/rggobi.

Also, package rgl (https://CRAN.R-project.org/package=rgl) provides ways to interact
with 3D plots, for example of surfaces.
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13 Packages

All R functions and datasets are stored in packages. Only when a package is loaded are its
contents available. This is done both for efficiency (the full list would take more memory and
would take longer to search than a subset), and to aid package developers, who are protected
from name clashes with other code. The process of developing packages is described in Section
“Creating R packages” in Writing R Extensions. Here, we will describe them from a user’s point
of view.

To see which packages are installed at your site, issue the command

> library()

with no arguments. To load a particular package (e.g., the boot (https://CRAN.R-project.
org/package=boot) package containing functions from Davison & Hinkley (1997)), use a com-
mand like

> library(boot)

Users connected to the Internet can use the install.packages() and update.packages()

functions (available through the Packages menu in the Windows and OS X GUIs, see Section
“Installing packages” in R Installation and Administration) to install and update packages.

To see which packages are currently loaded, use

> search()

to display the search list. Some packages may be loaded but not available on the search list (see
Section 13.3 [Namespaces], page 78): these will be included in the list given by

> loadedNamespaces()

To see a list of all available help topics in an installed package, use

> help.start()

to start the HTML help system, and then navigate to the package listing in the Reference

section.

13.1 Standard packages

The standard (or base) packages are considered part of the R source code. They contain the
basic functions that allow R to work, and the datasets and standard statistical and graphical
functions that are described in this manual. They should be automatically available in any R
installation. See Section “R packages” in R FAQ, for a complete list.

13.2 Contributed packages and CRAN

There are thousands of contributed packages for R, written by many different authors. Some
of these packages implement specialized statistical methods, others give access to data or hard-
ware, and others are designed to complement textbooks. Some (the recommended packages) are
distributed with every binary distribution of R. Most are available for download from CRAN

(https://CRAN.R-project.org/ and its mirrors) and other repositories such as Bioconductor
(https://www.bioconductor.org/) and Omegahat (http://www.omegahat.org/). The R
FAQ contains a list of CRAN packages current at the time of release, but the collection of
available packages changes very frequently.
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13.3 Namespaces

All packages have namespaces, and have since R 2.14.0. Namespaces do three things: they allow
the package writer to hide functions and data that are meant only for internal use, they prevent
functions from breaking when a user (or other package writer) picks a name that clashes with
one in the package, and they provide a way to refer to an object within a particular package.

For example, t() is the transpose function in R, but users might define their own function
named t. Namespaces prevent the user’s definition from taking precedence, and breaking every
function that tries to transpose a matrix.

There are two operators that work with namespaces. The double-colon operator :: selects
definitions from a particular namespace. In the example above, the transpose function will
always be available as base::t, because it is defined in the base package. Only functions that
are exported from the package can be retrieved in this way.

The triple-colon operator ::: may be seen in a few places in R code: it acts like the
double-colon operator but also allows access to hidden objects. Users are more likely to use
the getAnywhere() function, which searches multiple packages.

Packages are often inter-dependent, and loading one may cause others to be automatically
loaded. The colon operators described above will also cause automatic loading of the associated
package. When packages with namespaces are loaded automatically they are not added to the
search list.
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14 OS facilities

R has quite extensive facilities to access the OS under which it is running: this allows it to be
used as a scripting language and that ability is much used by R itself, for example to install
packages.

Because R’s own scripts need to work across all platforms, considerable effort has gone into
make the scripting facilities as platform-independent as is feasible.

14.1 Files and directories

There are many functions to manipulate files and directories. Here are pointers to some of the
more commonly used ones.

To create an (empty) file or directory, use file.create or create.dir. (These are the
analogues of the POSIX utilities touch and mkdir.) For temporary files and directories in the
R session directory see tempfile.

Files can be removed by either file.remove or unlink: the latter can remove directory
trees.

For directory listings use list.files (also available as dir) or list.dirs. These can select
files using a regular expression: to select by wildcards use Sys.glob.

Many types of information on a filepath (including for example if it is a file or directory) can
be found by file.info.

There are several ways to find out if a file ‘exists’ (a file can exist on the filesystem and not
be visible to the current user). There are functions file.exists, file.access and file_test

with various versions of this test: file_test is a version of the POSIX test command for those
familiar with shell scripting.

Function file.copy is the R analogue of the POSIX command cp.

Choosing files can be done interactively by file.choose: the Windows port has the more
versatile functions choose.files and choose.dir and there are similar functions in the tcltk
package: tk_choose.files and tk_choose.dir.

Functions file.show and file.edit will display and edit one or more files in a way appro-
priate to the R port, using the facilities of a console (such as RGui on Windows or R.app on OS
X) if one is in use.

There is some support for links in the filesystem: see functions file.link and Sys.readlink.

14.2 Filepaths

With a few exceptions, R relies on the underlying OS functions to manipulate filepaths. Some
aspects of this are allowed to depend on the OS, and do, even down to the version of the OS.
There are POSIX standards for how OSes should interpret filepaths and many R users assume
POSIX compliance: but Windows does not claim to be compliant and other OSes may be less
than completely compliant.

The following are some issues which have been encountered with filepaths.

• POSIX filesystems are case-sensitive, so foo.png and Foo.PNG are different files. However,
the defaults on Windows and OS X are to be case-insensitive, and FAT filesystems (com-
monly used on removable storage) are not normally case-sensitive (and all filepaths may be
mapped to lower case).

• Almost all the Windows’ OS services support the use of slash or backslash as the filepath
separator, and R converts the known exceptions to the form required by Windows.
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• The behaviour of filepaths with a trailing slash is OS-dependent. Such paths are not valid
on Windows and should not be expected to work. POSIX-2008 requires such paths to
match only directories, but earlier versions allowed them to also match files. So they are
best avoided.

• Multiple slashes in filepaths such as /abc//def are valid on POSIX filesystems and treated
as if there was only one slash. They are usually accepted by Windows’ OS functions.
However, leading double slashes may have a different meaning.

• Windows’ UNC filepaths (such as \\server\dir1\dir2\file and
\\?\UNC\server\dir1\dir2\file) are not supported, but they may work in
some R functions. POSIX filesystems are allowed to treat a leading double slash specially.

• Windows allows filepaths containing drives and relative to the current directory on a drive,
e.g. d:foo/bar refers to d:/a/b/c/foo/bar if the current directory on drive d: is /a/b/c.
It is intended that these work, but the use of absolute paths is safer.

Functions basename and dirname select parts of a file path: the recommended way to as-
semble a file path from components is file.path. Function pathexpand does ‘tilde expansion’,
substituting values for home directories (the current user’s, and perhaps those of other users).

On filesystems with links, a single file can be referred to by many filepaths. Function
normalizePath will find a canonical filepath.

Windows has the concepts of short (‘8.3’) and long file names: normalizePath will return an
absolute path using long file names and shortPathName will return a version using short names.
The latter does not contain spaces and uses backslash as the separator, so is sometimes useful
for exporting names from R.

File permissions are a related topic. R has support for the POSIX concepts of
read/write/execute permission for owner/group/all but this may be only partially supported
on the filesystem (so for example on Windows only read-only files (for the account running the
R session) are recognized. Access Control Lists (ACLs) are employed on several filesystems,
but do not have an agreed standard and R has no facilities to control them. Use Sys.chmod to
change permissions.

14.3 System commands

Functions system and system2 are used to invoke a system command and optionally collect
its output. system2 is a little more general but its main advantage is that it is easier to write
cross-platform code using it.

system behaves differently on Windows from other OSes (because the API C call of that
name does). Elsewhere it invokes a shell to run the command: the Windows port of R has a
function shell to do that.

To find out if the OS includes a command, use Sys.which, which attempts to do this in a
cross-platform way (unfortunately it is not a standard OS service).

Function shQuote will quote filepaths as needed for commands in the current OS.

14.4 Compression and Archives

Recent versions of R have extensive facilities to read and write compressed files, often transpar-
ently. Reading of files in R is to a vey large extent done by connections, and the file function
which is used to open a connection to a file (or a URL) and is able to identify the compression
used from the ‘magic’ header of the file.

The type of compression which has been supported for longest is gzip compression, and
that remains a good general compromise. Files compressed by the earlier Unix compress utility
can also be read, but these are becoming rare. Two other forms of compression, those of the
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bzip2 and xz utilities are also available. These generally achieve higher rates of compression
(depending on the file, much higher) at the expense of slower decompression and much slower
compression.

There is some confusion between xz and lzma compression (see https://en.wikipedia.

org/wiki/Xz and https://en.wikipedia.org/wiki/LZMA): R can read files compressed by
most versions of either.

File archives are single files which contain a collection of files, the most common ones being
‘tarballs’ and zip files as used to distribute R packages. R can list and unpack both (see functions
untar and unzip) and create both (for zip with the help of an external program).
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Appendix A A sample session

The following session is intended to introduce to you some features of the R environment by
using them. Many features of the system will be unfamiliar and puzzling at first, but this
puzzlement will soon disappear.

Start R appropriately for your platform (see Appendix B [Invoking R], page 85).

The R program begins, with a banner.

(Within R code, the prompt on the left hand side will not be shown to avoid con-
fusion.)

help.start()

Start the HTML interface to on-line help (using a web browser available at your
machine). You should briefly explore the features of this facility with the mouse.

Iconify the help window and move on to the next part.

x <- rnorm(50)

y <- rnorm(x)

Generate two pseudo-random normal vectors of x- and y-coordinates.

plot(x, y)

Plot the points in the plane. A graphics window will appear automatically.

ls() See which R objects are now in the R workspace.

rm(x, y) Remove objects no longer needed. (Clean up).

x <- 1:20 Make x = (1, 2, . . . , 20).

w <- 1 + sqrt(x)/2

A ‘weight’ vector of standard deviations.

dummy <- data.frame(x=x, y= x + rnorm(x)*w)

dummy Make a data frame of two columns, x and y, and look at it.

fm <- lm(y ~ x, data=dummy)

summary(fm)

Fit a simple linear regression and look at the analysis. With y to the left of the
tilde, we are modelling y dependent on x.

fm1 <- lm(y ~ x, data=dummy, weight=1/w^2)

summary(fm1)

Since we know the standard deviations, we can do a weighted regression.

attach(dummy)

Make the columns in the data frame visible as variables.

lrf <- lowess(x, y)

Make a nonparametric local regression function.

plot(x, y)

Standard point plot.

lines(x, lrf$y)

Add in the local regression.

abline(0, 1, lty=3)

The true regression line: (intercept 0, slope 1).

abline(coef(fm))

Unweighted regression line.
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abline(coef(fm1), col = "red")

Weighted regression line.

detach() Remove data frame from the search path.

plot(fitted(fm), resid(fm),

xlab="Fitted values",

ylab="Residuals",

main="Residuals vs Fitted")

A standard regression diagnostic plot to check for heteroscedasticity. Can you see
it?

qqnorm(resid(fm), main="Residuals Rankit Plot")

A normal scores plot to check for skewness, kurtosis and outliers. (Not very useful
here.)

rm(fm, fm1, lrf, x, dummy)

Clean up again.

The next section will look at data from the classical experiment of Michelson to measure the
speed of light. This dataset is available in the morley object, but we will read it to illustrate
the read.table function.

filepath <- system.file("data", "morley.tab" , package="datasets")

filepath Get the path to the data file.

file.show(filepath)

Optional. Look at the file.

mm <- read.table(filepath)

mm Read in the Michelson data as a data frame, and look at it. There are five exper-
iments (column Expt) and each has 20 runs (column Run) and sl is the recorded
speed of light, suitably coded.

mm$Expt <- factor(mm$Expt)

mm$Run <- factor(mm$Run)

Change Expt and Run into factors.

attach(mm)

Make the data frame visible at position 3 (the default).

plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.")

Compare the five experiments with simple boxplots.

fm <- aov(Speed ~ Run + Expt, data=mm)

summary(fm)

Analyze as a randomized block, with ‘runs’ and ‘experiments’ as factors.

fm0 <- update(fm, . ~ . - Run)

anova(fm0, fm)

Fit the sub-model omitting ‘runs’, and compare using a formal analysis of variance.

detach()

rm(fm, fm0)

Clean up before moving on.

We now look at some more graphical features: contour and image plots.

x <- seq(-pi, pi, len=50)

y <- x x is a vector of 50 equally spaced values in −π ≤ x ≤ π. y is the same.
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f <- outer(x, y, function(x, y) cos(y)/(1 + x^2))

f is a square matrix, with rows and columns indexed by x and y respectively, of
values of the function cos(y)/(1 + x2).

oldpar <- par(no.readonly = TRUE)

par(pty="s")

Save the plotting parameters and set the plotting region to “square”.

contour(x, y, f)

contour(x, y, f, nlevels=15, add=TRUE)

Make a contour map of f ; add in more lines for more detail.

fa <- (f-t(f))/2

fa is the “asymmetric part” of f . (t() is transpose).

contour(x, y, fa, nlevels=15)

Make a contour plot, . . .

par(oldpar)

. . . and restore the old graphics parameters.

image(x, y, f)

image(x, y, fa)

Make some high density image plots, (of which you can get hardcopies if you wish),
. . .

objects(); rm(x, y, f, fa)

. . . and clean up before moving on.

R can do complex arithmetic, also.

th <- seq(-pi, pi, len=100)

z <- exp(1i*th)

1i is used for the complex number i.

par(pty="s")

plot(z, type="l")

Plotting complex arguments means plot imaginary versus real parts. This should
be a circle.

w <- rnorm(100) + rnorm(100)*1i

Suppose we want to sample points within the unit circle. One method would be to
take complex numbers with standard normal real and imaginary parts . . .

w <- ifelse(Mod(w) > 1, 1/w, w)

. . . and to map any outside the circle onto their reciprocal.

plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y")

lines(z) All points are inside the unit circle, but the distribution is not uniform.

w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i)

plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y")

lines(z) The second method uses the uniform distribution. The points should now look more
evenly spaced over the disc.

rm(th, w, z)

Clean up again.

q() Quit the R program. You will be asked if you want to save the R workspace, and
for an exploratory session like this, you probably do not want to save it.
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Appendix B Invoking R

Users of R on Windows or OS X should read the OS-specific section first, but command-line use
is also supported.

B.1 Invoking R from the command line

When working at a command line on UNIX or Windows, the command ‘R’ can be used both for
starting the main R program in the form

R [options] [<infile] [>outfile],

or, via the R CMD interface, as a wrapper to various R tools (e.g., for processing files in R
documentation format or manipulating add-on packages) which are not intended to be called
“directly”.

At the Windows command-line, Rterm.exe is preferred to R.

You need to ensure that either the environment variable TMPDIR is unset or it points to a
valid place to create temporary files and directories.

Most options control what happens at the beginning and at the end of an R session. The
startup mechanism is as follows (see also the on-line help for topic ‘Startup’ for more informa-
tion, and the section below for some Windows-specific details).

• Unless --no-environ was given, R searches for user and site files to process for setting
environment variables. The name of the site file is the one pointed to by the environ-
ment variable R_ENVIRON; if this is unset, R_HOME/etc/Renviron.site is used (if it exists).
The user file is the one pointed to by the environment variable R_ENVIRON_USER if this
is set; otherwise, files .Renviron in the current or in the user’s home directory (in that
order) are searched for. These files should contain lines of the form ‘name=value’. (See
help("Startup") for a precise description.) Variables you might want to set include R_

PAPERSIZE (the default paper size), R_PRINTCMD (the default print command) and R_LIBS

(specifies the list of R library trees searched for add-on packages).

• Then R searches for the site-wide startup profile unless the command line option --no-

site-file was given. The name of this file is taken from the value of the R_PROFILE

environment variable. If that variable is unset, the default R_HOME/etc/Rprofile.site is
used if this exists.

• Then, unless --no-init-file was given, R searches for a user profile and sources it. The
name of this file is taken from the environment variable R_PROFILE_USER; if unset, a file
called .Rprofile in the current directory or in the user’s home directory (in that order) is
searched for.

• It also loads a saved workspace from file .RData in the current directory if there is one
(unless --no-restore or --no-restore-data was specified).

• Finally, if a function .First() exists, it is executed. This function (as well as .Last()

which is executed at the end of the R session) can be defined in the appropriate startup
profiles, or reside in .RData.

In addition, there are options for controlling the memory available to the R process (see the
on-line help for topic ‘Memory’ for more information). Users will not normally need to use these
unless they are trying to limit the amount of memory used by R.

R accepts the following command-line options.

--help

-h Print short help message to standard output and exit successfully.

--version

Print version information to standard output and exit successfully.
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--encoding=enc

Specify the encoding to be assumed for input from the console or stdin. This needs
to be an encoding known to iconv: see its help page. (--encoding enc is also
accepted.) The input is re-encoded to the locale R is running in and needs to be
representable in the latter’s encoding (so e.g. you cannot re-encode Greek text in a
French locale unless that locale uses the UTF-8 encoding).

RHOME Print the path to the R “home directory” to standard output and exit success-
fully. Apart from the front-end shell script and the man page, R installation puts
everything (executables, packages, etc.) into this directory.

--save

--no-save

Control whether data sets should be saved or not at the end of the R session. If
neither is given in an interactive session, the user is asked for the desired behavior
when ending the session with q(); in non-interactive use one of these must be
specified or implied by some other option (see below).

--no-environ

Do not read any user file to set environment variables.

--no-site-file

Do not read the site-wide profile at startup.

--no-init-file

Do not read the user’s profile at startup.

--restore

--no-restore

--no-restore-data

Control whether saved images (file .RData in the directory where R was started)
should be restored at startup or not. The default is to restore. (--no-restore
implies all the specific --no-restore-* options.)

--no-restore-history

Control whether the history file (normally file .Rhistory in the directory where
R was started, but can be set by the environment variable R_HISTFILE) should be
restored at startup or not. The default is to restore.

--no-Rconsole

(Windows only) Prevent loading the Rconsole file at startup.

--vanilla

Combine --no-save, --no-environ, --no-site-file, --no-init-file and --no-

restore. Under Windows, this also includes --no-Rconsole.

-f file

--file=file

(not Rgui.exe) Take input from file: ‘-’ means stdin. Implies --no-save unless
--save has been set. On a Unix-alike, shell metacharacters should be avoided in
file (but spaces are allowed).

-e expression

(not Rgui.exe) Use expression as an input line. One or more -e options can be
used, but not together with -f or --file. Implies --no-save unless --save has
been set. (There is a limit of 10,000 bytes on the total length of expressions used
in this way. Expressions containing spaces or shell metacharacters will need to be
quoted.)
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--no-readline

(UNIX only) Turn off command-line editing via readline. This is useful when run-
ning R from within Emacs using the ESS (“Emacs Speaks Statistics”) package. See
Appendix C [The command-line editor], page 92, for more information. Command-
line editing is enabled for default interactive use (see --interactive). This option
also affects tilde-expansion: see the help for path.expand.

--min-vsize=N

--min-nsize=N

For expert use only: set the initial trigger sizes for garbage collection of vector heap
(in bytes) and cons cells (number) respectively. Suffix ‘M’ specifies megabytes or
millions of cells respectively. The defaults are 6Mb and 350k respectively and can
also be set by environment variables R_NSIZE and R_VSIZE.

--max-ppsize=N

Specify the maximum size of the pointer protection stack as N locations. This
defaults to 10000, but can be increased to allow large and complicated calculations
to be done. Currently the maximum value accepted is 100000.

--max-mem-size=N

(Windows only) Specify a limit for the amount of memory to be used both for R
objects and working areas. This is set by default to the smaller of the amount of
physical RAM in the machine and for 32-bit R, 1.5Gb1, and must be between 32Mb
and the maximum allowed on that version of Windows.

--quiet

--silent

-q Do not print out the initial copyright and welcome messages.

--slave Make R run as quietly as possible. This option is intended to support programs
which use R to compute results for them. It implies --quiet and --no-save.

--interactive

(UNIX only) Assert that R really is being run interactively even if input has been
redirected: use if input is from a FIFO or pipe and fed from an interactive program.
(The default is to deduce that R is being run interactively if and only if stdin is
connected to a terminal or pty.) Using -e, -f or --file asserts non-interactive use
even if --interactive is given.

Note that this does not turn on command-line editing.

--ess (Windows only) Set Rterm up for use by R-inferior-mode in ESS, including assert-
ing interactive use (without the command-line editor) and no buffering of stdout.

--verbose

Print more information about progress, and in particular set R’s option verbose to
TRUE. R code uses this option to control the printing of diagnostic messages.

--debugger=name

-d name (UNIX only) Run R through debugger name. For most debuggers (the exceptions are
valgrind and recent versions of gdb), further command line options are disregarded,
and should instead be given when starting the R executable from inside the debugger.

--gui=type

-g type (UNIX only) Use type as graphical user interface (note that this also includes in-
teractive graphics). Currently, possible values for type are ‘X11’ (the default) and,

1 2.5Gb on versions of Windows that support 3Gb per process and have the support enabled: see the rw-FAQ

Q2.9; 3.5Gb on most 64-bit versions of Windows.

Case: 3:15-cv-00421-jdp   Document #: 72-1   Filed: 01/26/16   Page 93 of 105



Appendix B: Invoking R 88

provided that ‘Tcl/Tk’ support is available, ‘Tk’. (For back-compatibility, ‘x11’ and
‘tk’ are accepted.)

--arch=name

(UNIX only) Run the specified sub-architecture.

--args This flag does nothing except cause the rest of the command line to be skipped:
this can be useful to retrieve values from it with commandArgs(TRUE).

Note that input and output can be redirected in the usual way (using ‘<’ and ‘>’), but the
line length limit of 4095 bytes still applies. Warning and error messages are sent to the error
channel (stderr).

The command R CMD allows the invocation of various tools which are useful in conjunction
with R, but not intended to be called “directly”. The general form is

R CMD command args

where command is the name of the tool and args the arguments passed on to it.

Currently, the following tools are available.

BATCH Run R in batch mode. Runs R --restore --save with possibly further options (see
?BATCH).

COMPILE (UNIX only) Compile C, C++, Fortran . . . files for use with R.

SHLIB Build shared library for dynamic loading.

INSTALL Install add-on packages.

REMOVE Remove add-on packages.

build Build (that is, package) add-on packages.

check Check add-on packages.

LINK (UNIX only) Front-end for creating executable programs.

Rprof Post-process R profiling files.

Rdconv

Rd2txt Convert Rd format to various other formats, including HTML, LATEX, plain text,
and extracting the examples. Rd2txt can be used as shorthand for Rd2conv -t txt.

Rd2pdf Convert Rd format to PDF.

Stangle Extract S/R code from Sweave or other vignette documentation

Sweave Process Sweave or other vignette documentation

Rdiff Diff R output ignoring headers etc

config Obtain configuration information

javareconf

(Unix only) Update the Java configuration variables

rtags (Unix only) Create Emacs-style tag files from C, R, and Rd files

open (Windows only) Open a file via Windows’ file associations

texify (Windows only) Process (La)TeX files with R’s style files

Use
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R CMD command --help

to obtain usage information for each of the tools accessible via the R CMD interface.

In addition, you can use options --arch=, --no-environ, --no-init-file, --no-site-

file and --vanilla between R and CMD: these affect any R processes run by the tools. (Here
--vanilla is equivalent to --no-environ --no-site-file --no-init-file.) However, note
that R CMD does not of itself use any R startup files (in particular, neither user nor site Renviron
files), and all of the R processes run by these tools (except BATCH) use --no-restore. Most
use --vanilla and so invoke no R startup files: the current exceptions are INSTALL, REMOVE,
Sweave and SHLIB (which uses --no-site-file --no-init-file).

R CMD cmd args

for any other executable cmd on the path or given by an absolute filepath: this is useful to have
the same environment as R or the specific commands run under, for example to run ldd or
pdflatex. Under Windows cmd can be an executable or a batch file, or if it has extension .sh

or .pl the appropriate interpreter (if available) is called to run it.

B.2 Invoking R under Windows

There are two ways to run R under Windows. Within a terminal window (e.g. cmd.exe or a more
capable shell), the methods described in the previous section may be used, invoking by R.exe

or more directly by Rterm.exe. For interactive use, there is a console-based GUI (Rgui.exe).

The startup procedure under Windows is very similar to that under UNIX, but references
to the ‘home directory’ need to be clarified, as this is not always defined on Windows. If the
environment variable R_USER is defined, that gives the home directory. Next, if the environment
variable HOME is defined, that gives the home directory. After those two user-controllable settings,
R tries to find system defined home directories. It first tries to use the Windows "personal"
directory (typically C:\Documents and Settings\username\My Documents in Windows XP). If
that fails, and environment variables HOMEDRIVE and HOMEPATH are defined (and they normally
are) these define the home directory. Failing all those, the home directory is taken to be the
starting directory.

You need to ensure that either the environment variables TMPDIR, TMP and TEMP are either
unset or one of them points to a valid place to create temporary files and directories.

Environment variables can be supplied as ‘name=value’ pairs on the command line.

If there is an argument ending .RData (in any case) it is interpreted as the path to the
workspace to be restored: it implies --restore and sets the working directory to the parent of
the named file. (This mechanism is used for drag-and-drop and file association with RGui.exe,
but also works for Rterm.exe. If the named file does not exist it sets the working directory if
the parent directory exists.)

The following additional command-line options are available when invoking RGui.exe.

--mdi

--sdi

--no-mdi Control whether Rgui will operate as an MDI program (with multiple child windows
within one main window) or an SDI application (with multiple top-level windows for
the console, graphics and pager). The command-line setting overrides the setting in
the user’s Rconsole file.

--debug Enable the “Break to debugger” menu item in Rgui, and trigger a break to the
debugger during command line processing.

Under Windows with R CMD you may also specify your own .bat, .exe, .sh or .pl file. It
will be run under the appropriate interpreter (Perl for .pl) with several environment variables
set appropriately, including R_HOME, R_OSTYPE, PATH, BSTINPUTS and TEXINPUTS. For example,
if you already have latex.exe on your path, then
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R CMD latex.exe mydoc

will run LATEX on mydoc.tex, with the path to R’s share/texmfmacros appended to TEXINPUTS.
(Unfortunately, this does not help with the MiKTeX build of LATEX, but R CMD texify mydoc

will work in that case.)

B.3 Invoking R under OS X

There are two ways to run R under OS X. Within a Terminal.app window by invoking R, the
methods described in the first subsection apply. There is also console-based GUI (R.app) that by
default is installed in the Applications folder on your system. It is a standard double-clickable
OS X application.

The startup procedure under OS X is very similar to that under UNIX, but R.app does not
make use of command-line arguments. The ‘home directory’ is the one inside the R.framework,
but the startup and current working directory are set as the user’s home directory unless a
different startup directory is given in the Preferences window accessible from within the GUI.

B.4 Scripting with R

If you just want to run a file foo.R of R commands, the recommended way is to use R CMD BATCH

foo.R. If you want to run this in the background or as a batch job use OS-specific facilities to
do so: for example in most shells on Unix-alike OSes R CMD BATCH foo.R & runs a background
job.

You can pass parameters to scripts via additional arguments on the command line: for
example (where the exact quoting needed will depend on the shell in use)

R CMD BATCH "--args arg1 arg2" foo.R &

will pass arguments to a script which can be retrieved as a character vector by

args <- commandArgs(TRUE)

This is made simpler by the alternative front-end Rscript, which can be invoked by

Rscript foo.R arg1 arg2

and this can also be used to write executable script files like (at least on Unix-alikes, and in
some Windows shells)

#! /path/to/Rscript

args <- commandArgs(TRUE)

...

q(status=<exit status code>)

If this is entered into a text file runfoo and this is made executable (by chmod 755 runfoo), it
can be invoked for different arguments by

runfoo arg1 arg2

For further options see help("Rscript"). This writes R output to stdout and stderr, and
this can be redirected in the usual way for the shell running the command.

If you do not wish to hardcode the path to Rscript but have it in your path (which is
normally the case for an installed R except on Windows, but e.g. OS X users may need to add
/usr/local/bin to their path), use

#! /usr/bin/env Rscript

...

At least in Bourne and bash shells, the #! mechanism does not allow extra arguments like #!

/usr/bin/env Rscript --vanilla.

One thing to consider is what stdin() refers to. It is commonplace to write R scripts with
segments like
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chem <- scan(n=24)

2.90 3.10 3.40 3.40 3.70 3.70 2.80 2.50 2.40 2.40 2.70 2.20

5.28 3.37 3.03 3.03 28.95 3.77 3.40 2.20 3.50 3.60 3.70 3.70

and stdin() refers to the script file to allow such traditional usage. If you want to refer to the
process’s stdin, use "stdin" as a file connection, e.g. scan("stdin", ...).

Another way to write executable script files (suggested by François Pinard) is to use a here
document like

#!/bin/sh

[environment variables can be set here]

R --slave [other options] <<EOF

R program goes here...

EOF

but here stdin() refers to the program source and "stdin" will not be usable.

Short scripts can be passed to Rscript on the command-line via the -e flag. (Empty scripts
are not accepted.)

Note that on a Unix-alike the input filename (such as foo.R) should not contain spaces nor
shell metacharacters.
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Appendix C The command-line editor

C.1 Preliminaries

When the GNU readline library is available at the time R is configured for compilation un-
der UNIX, an inbuilt command line editor allowing recall, editing and re-submission of prior
commands is used. Note that other versions of readline exist and may be used by the inbuilt
command line editor: this used to happen on OS X.

It can be disabled (useful for usage with ESS1) using the startup option --no-readline.

Windows versions of R have somewhat simpler command-line editing: see ‘Console’ under the
‘Help’ menu of the GUI, and the file README.Rterm for command-line editing under Rterm.exe.

When using R with readline capabilities, the functions described below are available, as well
as others (probably) documented in man readline or info readline on your system.

Many of these use either Control or Meta characters. Control characters, such as Control-m,
are obtained by holding the CTRL down while you press the m key, and are written as C-m below.
Meta characters, such as Meta-b, are typed by holding down META2 and pressing b, and written
as M-b in the following. If your terminal does not have a META key enabled, you can still type
Meta characters using two-character sequences starting with ESC. Thus, to enter M-b, you could
type ESCb. The ESC character sequences are also allowed on terminals with real Meta keys. Note
that case is significant for Meta characters.

C.2 Editing actions

The R program keeps a history of the command lines you type, including the erroneous lines,
and commands in your history may be recalled, changed if necessary, and re-submitted as new
commands. In Emacs-style command-line editing any straight typing you do while in this
editing phase causes the characters to be inserted in the command you are editing, displacing
any characters to the right of the cursor. In vi mode character insertion mode is started by M-i

or M-a, characters are typed and insertion mode is finished by typing a further ESC. (The default
is Emacs-style, and only that is described here: for vi mode see the readline documentation.)

Pressing the RET command at any time causes the command to be re-submitted.

Other editing actions are summarized in the following table.

C.3 Command-line editor summary

Command recall and vertical motion

C-p Go to the previous command (backwards in the history).

C-n Go to the next command (forwards in the history).

C-r text Find the last command with the text string in it.

On most terminals, you can also use the up and down arrow keys instead of C-p and C-n,
respectively.

1 The ‘Emacs Speaks Statistics’ package; see the URL http://ESS.R-project.org
2 On a PC keyboard this is usually the Alt key, occasionally the ‘Windows’ key. On a Mac keyboard normally

no meta key is available.
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Horizontal motion of the cursor

C-a Go to the beginning of the command.

C-e Go to the end of the line.

M-b Go back one word.

M-f Go forward one word.

C-b Go back one character.

C-f Go forward one character.

On most terminals, you can also use the left and right arrow keys instead of C-b and C-f,
respectively.

Editing and re-submission

text Insert text at the cursor.

C-f text Append text after the cursor.

DEL Delete the previous character (left of the cursor).

C-d Delete the character under the cursor.

M-d Delete the rest of the word under the cursor, and “save” it.

C-k Delete from cursor to end of command, and “save” it.

C-y Insert (yank) the last “saved” text here.

C-t Transpose the character under the cursor with the next.

M-l Change the rest of the word to lower case.

M-c Change the rest of the word to upper case.

RET Re-submit the command to R.

The final RET terminates the command line editing sequence.

The readline key bindings can be customized in the usual way via a ~/.inputrc file. These
customizations can be conditioned on application R, that is by including a section like

$if R

"\C-xd": "q(’no’)\n"

$endif
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Appendix D Function and variable index
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A Unified Method of Evaluating Electoral Systems 
and Redistricting Plans* 

Andrew Gelman, Department of Statistics, 
University of California, Berkeley 
Gary King, Department of Government, Harvard University 

We derive a unified statistical method with which one can produce substantially im- 
proved definitions and estimates of almost any feature of two-party electoral systems that 
can be defined based on district vote shares. Our single method enables one to calculate 
more efficient estimates, with more trustworthy assessments of their uncertainty, than each 
of the separate multifarious existing measures of partisan bias, electoral responsiveness, 
seats-votes curves, expected or predicted vote in each district in a legislature, the probabil- 
ity that a given party will win the seat in each district, the proportion of incumbents or 
others who will lose their seats, the proportion of women or minority candidates to be 
elected, the incumbency advantage and other causal effects, the likely effects on the elec- 
toral system and district votes of proposed electoral reforms such as term limitations, 
campaign spending limits, and drawing majority-minority districts, and numerous others. 
To illustrate, we estimate the partisan bias and electoral responsiveness of the U.S. House 
of Representatives since 1900 and evaluate the fairness of competing redistricting plans for 
the 1992 Ohio state legislature. 

1. Introduction 

We introduce a unified and relatively simple statistical model with 
which one can evaluate electoral systems and redistricting plans in almost 
any way for virtually any legislature with two major parties and predomi- 
nately single-member districts. This model is useful (1) for understanding 
an election that has already taken place; (2) for predicting a future elec- 

*We have written a computer program to implement the methods derived in this 
article. The program is called Judgelt and is available from the ICPSR, via "gopher" or 
"anonymous FTP" from Haavelmo.Harvard.Edu, or by contacting us. Judgelt has been 
used in redistricting processes in many states and won the 1992 Research Software Award 
from the American Political Science Association. All data and information necessary to 
replicate the empirical analyses in this article are available from the ICPSR in a Class V 
data set listed under our names. Section 6.2 was drawn from Gary King's experience as a 
consultant to the State of Ohio in 1991-92. We thank Jim Alt, Neal Beck, Mike Lewis-Beck, 
and Doug Rivers for many helpful comments on this paper and the National Science Foun- 
dation for research grant SBR-9223637. Please address correspondence to Gary King, De- 
partment of Government, Harvard University, Littauer Center North Yard, Cambridge, 
Massachusetts 02138; email: gk@isr.Harvard.Edu; phone: (617)495-2027. 

American Journal of Political Science, Vol. 38, No. 2, May 1994, Pp. 514-54 
? 1994 by the University of Texas Press, P.O. Box 7819, Austin, TX 78713-7819 
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tion, possibly subject to a new redistricting plan; and (3) for evaluating 
a past election under specified counterfactual conditions (e.g., supposing 
no incumbents had run for reelection). For each of these general situa- 
tions, our method enables one to make virtually any prediction about or 
characterization of the pattern of district votes in an electoral system 
(e.g., the proportion of African American legislators who would lose their 
seats under a proposed redistricting plan). Some of the electoral system 
summaries that can be produced by this method include: 

* the seats-votes curve (Edgeworth 1898; Butler 1951; Schrodt 1981; 
Niemi and Fett 1986; Gelman and King 1990b); 

* partisan bias and electoral responsiveness (Tufte 1973; Grofman 
1983; King and Browning 1987; Brady 1988); 

* the expected or predicted vote in each legislative district (Lewis- 
Beck and Rice 1992; Cain 1985; Born 1985); 

* the probability that a given party will win the seat in each district; 
* incumbency advantage and other causal effects (Erikson 1971; 

Alford and Brady 1988; Gelman and King 1990a); 
* the expected proportion of incumbents, or others, who will lose 

their seats (Mayhew 1974; Fiorina 1977; Ferejohn 1977; Jacobson 
1987); 

* the expected number of women or minority candidates to be 
elected; 

* the likely effects on the electoral system and district votes of pro- 
posed electoral reforms, such as term limitations (Benjamin and 
Malbin 1992; Rothstein and Gilmour 1992), campaign spending 
limits (Jacobson 1980), and drawing majority-minority districts 
(Grofman, Handley, and Niemi 1992); 

* the contributions of incumbency advantage, or other aspects of the 
electoral system, to electoral system phenomena such as divided 
government (Mayhew 1991; Fiorina 1992; Campbell 1992; King and 
Gelman 1991). 

In providing estimates of these theoretical concepts, we apply the 
most important insight of the field of statistics in this century to the study 
of legislative elections-the distinction between the data one observes 
and the theoretical concepts to be estimated with the data. Too often in 
the legislative elections literature, scholars define a theoretical concept 
as identical to a measure of it. For example, scholars have defined the 
vulnerability of incumbents as their electoral margin in the last election. 
Certainly the latter has something to do with the former, but the two are 
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not the same.' Our model enables one to define any theoretical concept 
related to legislative elections and to make the best use of available data 
to provide empirical estimates. 

Moreover, as soon as one makes the fundamental distinction be- 
tween theory and data, the indispensable role of quantitative estimates 
of uncertainty (such as standard errors, confidence intervals, or margins 
of error) becomes absolutely clear. Perhaps since the distinction between 
theoretical concepts and data is not always made in legislative elections 
research, consistent reporting of standard errors is not yet routine. Our 
model automatically produces these estimates for virtually every quantity 
calculated and should therefore make reporting easier as well. 

We also provide means of evaluating the fit of the model to the data. 
Since our model cannot be estimated with existing statistical software, 
we have made available, as an accompaniment to this paper, a general 
purpose computer program that implements this model. We have evalu- 
ated the performance of this model in hundreds of thousands of districts, 
in dozens of election years in the U.S. Congress and numerous state 
legislatures. We have also had some limited experience applying the 
model to data from foreign countries. 

This paper had its origins in our attempts to generalize the models 
and methods developed in a series of articles by King and Browning 
(1987), King (1989a), Gelman and King (1990a, 1990b), and King and 
Gelman (1991). The most recent of these models is technically sophisti- 
cated and quite computationally intensive; we believed that adding addi- 
tional features would make it more realistic but would unfortunately pro- 
duce an even more complicated model. We were right about the former 
and wrong about the latter: adding additional information produced a 
more realistic model for which much of the algebra fell out, leaving a 
surprisingly simple model. We simplified the model further by eliminating 
features that did not materially affect the substantive conclusions, based 
on our analyses of congressional and state legislative elections. The re- 
sulting model turned out to be useful not only for our original goal but 
for numerous other applications in the academic literature as well. 

Section 2 introduces the basic model; section 3 discusses issues of 
preliminary estimation. We derive the distribution of votes in actual, 
predictive, and counterfactual situations derived from this model in sec- 
tion 4. In section 5, we show how to estimate, along with a standard 

'It is not difficult to imagine an incumbent who wins elections by small margins but, 
perhaps due to high levels of racial polarization, consistently and predictably wins reelec- 
tion; similarly, an incumbent who won with a large margin in the last election would be 
quite vulnerable if he or she were convicted of a felony. 
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error, any feature or prediction of interest. Examples appear in section 6. 
Section 7 concludes. Appendixes A-C provide technical details. 

2. A Model of District-based Electoral Systems 

2.1. The Model 

In order to generally distinguish between the data (actual election 
results) and theoretical quantities of interest, we begin by predicting what 
could happen, or what would have happened, if the election were held 
again under specified conditions. More specifically, we define hypotheti- 
cal election results as the set of all possible election outcomes that could 
have occurred if all political conditions up to the start of the campaign 
were held constant and the campaign were run again. 

To define hypothetical elections formally, we need a probability 
model to encompass our uncertainty and allow a range of reasonable 
possibilities for the hypothetical outcomes. This avoids the unreasonable 
assumption that election outcomes are exactly determined and can be 
forecast without error, given variables measured before the start of the 
campaign. The model presented here allows us to calculate the (posterior) 
probability distribution of these hypothetical election results. We think 
of the -observed election result as just one of the possible hypothetical 
election results that could have occurred. Any specific theoretical quan- 
tity of interest and its standard error can then be calculated directly from 
the distribution of hypothetical election results. 

Although our model applies to any two-party system, we use the 
labels "Democratic" and "Republican" to fix ideas more clearly. We 
also use a state legislative election as the running example with which to 
introduce this model. It should be clear, however, that the model applies 
much more widely. Following the algebraic presentation of the model, 
we discuss in more detail a substantive interpretation of the model in 
section 2.2, and the explanatory variables we recommend including in 
section 2.3. A discussion of alternative arrangements for the treatment 
of uncontested districts appears in Appendix A. 

Notation. We assume a legislature comprising n single-member dis- 
tricts, denoting vi as the Democratic proportion of the two-party vote in 
each district i, and v as the set of votes for all districts (v1, v2, . . . , va). 
The votes v will be predicted by k explanatory variables, which can to- 
gether be written as an n x k matrix, X. The first column of X should be 
all ones, corresponding to an intercept term in a regression; the remaining 
columns should be substantive explanatory variables, which we discuss 
in section 2.3. The matrix X is always known, and the votes vector v is 
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Table 1. Model Structure 

Hypothetical Replications 
Actual of Each District Election 
Election 

District Number Results 1 2 * m 

1 V v (hYP) I V (hyp)2 . . . V (hyp)m 

2V2 v (hyp) 
I 

V(hyp)2 V.(hyp)m 

n vn v(hYP) I V(hYP)2 V(hyp)m 

Quantity of interest Q Q(hyp)l Q(hyp)2 . . . Q(hyp)m 

known when evaluating an election that has occurred, but unknown for 
prediction. 

For hypothetical elections, we define a known matrix X(hYP) of ex- 
planatory variables, and an unknown vector v(hYP) of hypothetical district- 
level Democratic vote proportions. The vector X(hYP) is either equal to X 
or, to evaluate counterfactual assumptions, is defined as needed.2 The 
goal. of the analysis is inference about v(hYP), given X(hYP) (and given v 
if available). For the next brief subsection, we refer to the individual 
hypothetical replication j of the election in district i as v(hYp)j. 

Conceptual overview. The goal of our model is to calculate a joint 
probability distribution for all quantities of interest, such as those listed 
in section 1. From this, all point estimates and standard errors can be 
calculated. One way to portray our method of calculating this, as well as 
the results of the model we are about to describe, is Table 1 (see Rubin 
1987). Each row in the table refers to a district, with the district number 
in the first column and the actual election result in the second. If the 
problem is one of prediction, instead of evaluation, the actual election 
result is obviously not known. The remaining columns depict m hypo- 
thetical replications of each district election. Thus, in district 2, the actual 
Democratic proportion of the two-party vote is v2 (which might be, say, 
0.56) and again is known only if we are evaluating and not predicting. 
The first hypothetical replication, numbered 1, of the election in district 2 
is v~hyp) (which might be, say, 0.52 or 0.57), an example of what might 
happen if all conditions up to the start of the general election campaign 
were the same, but the campaign and balloting were run again. The sec- 

2For example, one might set the incumbency codes to all zeros to study the likely 
effect of term limits. 
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ond hypothetical replication in district 2 is denoted v~hyp)2 which is an- 
other draw from the same probability distribution characterizing these 
hypothetical elections. In this way, we model the uncertainty in electoral 
results by this variation across hypothetical elections. 

The last row in the table is a "quantity of interest," denoted Q for 
the actual election result and Q(hYP)j for hypothetical election replication 
j. This summary statistic is calculated from its corresponding column of 
real or hypothetical data. This could be virtually anything, but to fix ideas 
imagine that it is the proportion of incumbents who win reelection. Since 
for most purposes, incumbency is one of the conditions that, at the start 
of a general election campaign, we assume to be fixed across hypothetical 
replications, Q(hYP)j is calculated by taking the proportion of the district 
votes in the column greater than 0.5 (for Democratic incumbents) or less 
than 0.5 (for Republican incumbents) among only the rows that have 
incumbents. 

Once we have a set of hypothetical election results for each district 
election, and we have decided which summary statistic Q we wish to 
calculate and have calculated it, we can use a simple procedure to calcu- 
late an overall point estimate and standard error. The point estimate is 
just the average, and the standard error is the square root of the variance, 
across the row of m summary statistics in the table calculated for each 
hypothetical election result: 

m 

Q= 
1 Q(hYP)i; (1) 

j=1 

m 

Var(Q) = I (Q(hyp)j - Q)2 (2) 
m & 

1=1 

The only task remaining, then, is to estimate the (posterior) proba- 
bility distribution, with which we can generate these hypothetical elec- 
tion results and, in turn, calculate our point estimates and standard er- 
rors. Once we have this distribution, our actual method of calculation 
and estimation will correspond closely to the procedure illustrated in 
Table 1. 

The probability model. We model the district vote outcomes with a 
random components linear regression of v on X, 

v = XP + y + E, (3) 

where E is a vector of k parameters that must be estimated from data, 
and -y and E are two vectors of independent error terms. Strictly speaking, 
this independence assumption is imposed as a definitional feature of our 
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model, not assumed as a characteristic of the world; testing whether 
definitions such as this are "true" makes little sense, since E is defined 
as the part of the error term that is independent for each district vote. 
The variable E is a traditional random error term; -y is the "random com- 
ponent" error term, which helps correct for the fact that the X variables 
do not completely describe the state of the electoral system at the start 
of the campaign due to the omission of relevant variables and measure- 
ment error in the variables included. (We provide a detailed interpretation 
of y and E in section 2.2.) For each district i, the error terms are assigned 
independent normal distributions, 

-Yj- N(09 aJ2)(4 

Fsj N(09 aJ2 ) 

with variances ar and a 2 that must be estimated. Because -y and Fj are 
independent, equations (3) and (4) are, for some purposes, equivalent to 
a linear regression of y on X with a single error term of variance (r2 + 
o 2. For mathematical convenience, we reparameterize by defining a pa- 
rameter for the total variance and a parameter for the proportion of vari- 
ance due to y: 

(T 2 = T 2 + UT2 

U2 
A= (2 +2 

'y E 

The vector v(hYP) of hypothetical vote proportions is determined by 
an analogous probability model: 

v(hYP) = X(hyp)13 + 6(hyp) + - + F(hyp), (5) 

where E(hyp) is a new vector of n independent error terms with variance 
r2, and 8(hyp) is a known constant used to model statewide partisan swing. 
The hypothetical outcome, v(hYP), which generates the numerical results 
for the columns in Table 1, differs from the actual v in three ways: 

1. The explanatory variable matrix X is replaced by X(hYP), to recog- 
nize that we may wish to specify different conditions under which 
the hypothetical election may be run (such as no incumbents 
running). 

2. A constant, 8(hyp)9 is added to allow a statewide partisan swing to 
be specified. One can specify either 8(hyp) or a corresponding value 
for the expected average district vote, E(v(hYP)).3 

3This is true, since 8(hyp) = E(v(hYP)) - (I/n) YEi I(X(hYP) p),. 
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3. The new error term, (hyp), models the fact that, even if the vari- 
ables in X were unchanged, we would not expect v(hYP) to be iden- 
tical to v. Across many hypothetical elections, y remains un- 
changed, while E varies.4 

The parameters of this model to be estimated-& 2, X, and E-are 
not usually of primary interest in evaluating electoral systems and redis- 
tricting plans (although E is in some cases of interest in evaluating causal 
effects). Instead, we define all the quantities of interest, including the 
seats-votes curve, district vote predictions, and the like, in terms of the 
distribution of hypothetical election outcomes v(hYP), given the average 
district vote v' or the actual election outcomes v when available (which, 
in turn, depend on the parameters). The specific method for calculating 
this conditional distribution from this model is described in section 4. 

2.2. Interpretation of the Model 

Aggregate partisan swing. The parameter (hyp), or the corresponding 
value of E(v(hYP)), in this model is a notational convenience that allows 
us to vary the average district vote in a hypothetical (or predicted) elec- 
tion, without affecting the relative positions of the districts. This parti- 
tioning reflects the common result that it is often quite easy to predict 
which districts will vote more Republican than others, but it is harder to 
forecast exactly what the average vote will be across districts; put differ- 
ently, given the average vote across districts, it is easy to predict the 
vote proportions within each district. 

According to the model, expected votes differ across legislative dis- 
tricts at any one time (as governed by X13 + y). Over time, the districts 
swing along with the statewide mean (due to the scalar parameter 8(hyp)) 

but only on average (due to the random error term e). Another way to 
put this is that districts move on average with the statewide mean, but, 
for any given statewide issue producing a swing toward a party, any 
district may move with or against the statewide trend (as indicated by a 
scatter plot of district votes in two successive years; see, e.g., Figures 1 
and 2 in King and Gelman 1991). This allows us to account for local 
differences in the appeal of the candidates and other factors simulta- 
neously with statewide swings. 

The stochastic model is interpreted slightly differently for prediction 
and evaluation: for prediction, we ask how many seats will the Democrats 

4Another way to think of this model is that, for each district i, vi and v hYP) are not 
independent, due to the random variable -y they share. Given the explanatory variables X, 
XVhYP), and 8(hyp), and the parameters 3, &2, and X, we can combine equations (3) and (5) to 
find that the theoretical correlation between vi and vYP) is . 
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win with an average of 45% of the votes, say, and in evaluation we ask, 
how many seats would they have won if essentially the same election 
campaign had been run again.5 The only difference between evaluation 
and prediction is that we observe one of the possible hypothetical election 
outcomes for the former (the actual vote, the second column in Table 1) 
and do not observe any for the latter. Even after taking into account the 
information in our model expressed through the explanatory variables X, 
observing the election outcome will in general help us to some degree in 
characterizing the conditional distribution of hypothetical election out- 
comes; thus, under our model, inference about observed election systems 
will generally be sharper than predictions. 

Error terms. To understand the division between -y and 8 (or, equiva- 
lently, the relative values of aT and .2 ), consider the two extreme cases. 
If Ury = 0, then X = 0, and there is no systematic difference among 
districts except that described by X1. Consider two districts, i andj, with 
identical values of X but different outcomes in the election: vi = 0.6 and 
vj = 0.7. Without -y, all the difference between vi and vj must be attributed 
to the random error 8, and as a result, the distributions of hypothetical 
election results in districts i and j will be the same. For real electoral 
systems, the explanatory variables in X cannot be perfect, and it is usu- 
ally wrong to ignore the additional information that the Democrats did 
better in district j in the observed election. 

At the other extreme, if a 2 = 0, then X = 1, and every hypothetical 
election outcome v(hYp) must be identical to the observed v, except for 
the constant shift, a(hyp)* This is just the uniform partisan swing assump- 
tion (Butler 1951), which requires that individual districts move in lock- 
step with statewide swings. As distinct from the assumption of uniform 
partisan swing, there is also a uniform partisan swing method, which is 
only strictly appropriate when the corresponding assumption is correct. 
Unfortunately, this assumption does not apply to any known electoral 
system (again, see Figures 1 and 2 in King and Gelman 1991); in charac- 
terizing an electoral system, only the variation that persists in future 
election results deserves to be labeled "systematic" in the electoral sys- 
tem. In principle, the uniform partisan swing method can work in some 
cases even though the assumption is false, but it never produces honest 
estimates of uncertainty and is always less statistically efficient than the 
method we describe here. 

50f course, the model can address numerous other substantive questions; this one 
highlights the difference between what will happen in prediction and what would have 
happened in evaluation. 
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A final way of understanding the separation of y and E is by imagining 
that an extremely large number of explanatory variables were available 
in X-not just previous election results but also campaign spending, the 
effectiveness of every election campaign, lists of all campaign events, the 
results of all the campaign polls, the weather on election day, and so on. 
In this case, v could be predicted with essentially zero error. In this 
extreme situation, we would not want to assume that X is unchanged in 
hypothetical elections. It would make more sense to split X into two sets 
of variables: variables like past election results, incumbency, and party 
support in each district, which would not change if the election campaign 
were to be held again; and variables like campaign poll results and the 
weather on election day that would change. Between these extremes, 
some dividing line must be drawn that then defines the set of hypothetical 
elections and thus the electoral system. 

In the ideal world in which X contains all possible variables, we 
would lump the first set of variables with y as the systematic component 
and the second set with E as the stochastic component. When, as in 
practice, the variables in X are not complete, we can attribute the residu- 
als in the regression to the unobserved variables, and the residual vari- 
ance may be partitioned statistically, as we do, into that due to -y and E.6 

2.3. Explanatory Variables 

Whether we seek to predict the future or evaluate the past, our model 
requires explanatory variables that help predict votes v from explanatory 
variables X. (Section 4.2 continues the discussion of explanatory vari- 
ables in the context of defining counterfactual scenarios.) Our model uses 
these explanatory variables to help statistically partition election results 
into systematic and stochastic components. Since the purpose is not esti- 
mating causal effects, the rules for choosing explanatory variables are 
different than usual. The main immediate goal is to choose variables that 
would help in forecasting future votes.7 

When used for forecasting, our model will perform only as well as 
the variables chosen, and we take the main insight about the choice of 

6The distinction between My and ? can also be understood from the perspective of 
various philosophies about the role of random error in statistical analyses; see King (1989b, 
1991b). 

7By comparison, Gelman and King (1990a) did not control for any consequences of 
incumbency in their estimation of incumbency advantage. In the current application, we 
are just trying to predict, and we have no objection to controlling for variables such as 
campaign spending that are determined after, and in part as a consequence of, the incum- 
bent's decision of whether to run for reelection. We should be careful, of course, not to 
interpret the coefficients as causal estimates. 
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variables from the large existing forecasting literature (see Lewis-Beck 
and Rice 1992 for a review). For a given set of explanatory variables, our 
model will not produce better forecasts on average, for example, but it 
will give more accurate estimates of the uncertainty of those forecasts. 

On the basis of prior research, it is clear that the variables in X 
should certainly include past legislative election results, when available.8 
When including a previous legislative election, it also makes sense to 
include variables for incumbency, inc(t)i (defined as 1 if a Democratic 
incumbent is running; 0 if no incumbent is running; and - 1 if a Republi- 
can incumbent is running), and uncontestedness, unc(t)i (defined as 1 if 
a Democrat is running uncontested; 0 if the district election is contested; 
and - 1 if a Republican is running uncontested), for district i in election 
t. For election t, the variable inc(t) is the set of all district values, 
inc(t)1, . . ., inc(t)n, and similarly for unc(t). 

Uncontestedness is important because uncontested elections do not 
fit any linear model unless explicitly controlled for (or adjusted as in 
Appendix A). An incumbency status variable is important if there is a 
large incumbency advantage because without such an indicator, election 
results from a mixture of incumbent-controlled and open districts would 
not fit the assumptions of our linear model with independent error terms. 
In addition, including the incumbency variable usually improves the pre- 
dictive power of the model. In years following redistricting, incumbency 
status is often unclear, but it is still better to estimate the variable 
roughly, for each district, than to ignore it. If one is concerned about 
assuming that incumbency status will remain the same after redistricting, 
perhaps because of nonpartisan population base changes, one could in- 
clude interaction effects so that the effect of incumbency would vary by 
population base or other variables.9 

8When predicting an election just following a redistricting, the past election results 
will have to be reaggregated into the new districts, if possible. However, it usually makes 
little sense to do this without taking into account differences between the districts. By far 
the most important problem in creating voting data for new districts is combining districts 
with different incumbency status. To deal with this problem, we suggest the following 
procedure: (1) estimate the incumbency advantage from historical voting data using the 
method described in Gelman and King (1990b); (2) obtain legislative voting data at the 
precinct (or election district) level; (3) subtract the incumbency advantage from the incum- 
bent candidate in precincts represented by incumbents and give those votes to the opposi- 
tion party candidate (thus creating an estimate of what the electoral data at the precinct 
level would have been in an open-seat election); (4) aggregate the precincts up to the new 
districts; and finally, (5) add back the incumbency advantage based on the incumbency 
status in the new districts. One could do better still by also correcting for differences in 
candidate quality or other factors, if it really seems worth the effort. 

9The explanatory variable here could be the proportion of the people who move into 
or out of the district, for current districts, or proportion of people who are moved into or 
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As discussed in Gelman and King (1990a), a variable for party con- 
trol in the district is also useful: party(t)i (defined as 1 if the sitting incum- 
bent is a Democrat; - 1 if the sitting incumbent is a Republican; and 0 
otherwise-seat controlled by a third party). This variable controls for 
possible bimodality in the partisan strengths of districts. 10 It is especially 
important to include the party variable when the incumbency variable is 
inaccessible; without correcting for at least one of the two, most recent 
U.S. electoral systems would almost certainly be bimodal (Mayhew 
1974). When using a statewide variable, such as the race for state comp- 
troller, for prediction, it is of course unnecessary to include incumbency, 
as it affects all districts equally, but it may be desirable to adjust the 
district-level votes for comptroller by correcting for the "friends and 
neighbors" effect due to the local popularity of the statewide candidates. 

Uncontestedness, incumbency, and party control should also, of 
course, be used when predicting future elections. Party control should 
always be available, but uncontestedness and the decision of the incum- 
bent about whether to run will be more difficult to gather. We have found, 
however, that redistricters almost always have this information, so it is 
in principle not difficult if one can gain access." 

Statewide or nationwide election results, broken down by legislative 
districts, are also useful (when available). Other plausibly useful variables 

out of the district by redrawing the district lines, for forecasts following redistricting. How- 
ever, in our experience, nonpartisan base changes have little effect and are not especially 
useful for forecasting. 

10A regression model fit to a distribution with two clusters of partisans will wrongly 
fit a single linear model to both clusters, and as a result, will overestimate the "regression 
effect." Or to put it another way, a distribution with two clusters, corresponding to the 
two parties, does not fit a linear model without including different intercepts and a common 
slope. See King (1991a) for a graph of this and an explanation, and Gelman and King (1990b) 
for a description of the procedures we have developed to accommodate this problem even 
with bimodality. 

"1In most states, these data are produced by state computers and officially available 
to the public, but in practice, obtaining relevant information on the computer can require 
some inside contact. If data gathering becomes difficult, it makes the most sense in the 
framework of our model to make a guess about the incumbency status and uncontestedness 
of each district in the predicted election, and then draw conclusions conditional on the 
guess. Uncertainty in future electoral conditions may be expressed by considering several 
possibilities for incumbency and uncontestedness and evaluating the predictions for each. 
A standard assumption to start with is that all incumbents run, and incumbency status in 
new districts is determined by their residence (the actual figure is that about 85% of state 
legislators run for reelection, and 90% among U.S. House members; the decision to run 
again is independent of the legislator's share of the vote in the previous election), all 
contested seats stay contested, and all uncontested seats likewise remain so. One should 
also remember that following redistricting, more seats tend to be contested, and fewer 
incumbents run. 
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are campaign contributions received before the start of the campaign 
(perhaps transformed to the log scale to better fit the linear model), demo- 
graphic characteristics of the voting age population in the district, party 
registration figures (or relative proportions of votes cast in Democratic 
and Republican presidential primaries), and measures of candidate 
quality. 

3. Preliminary Estimation 

The purpose of the model (equations 3-5) is to estimate a quantity 
of interest Q from v(hYP), for an existing, future, or counterfactual elec- 
tion, given a matrix of explanatory variables, X(hYP), a shift parameter, 
8(hyp) (or the corresponding value of the expected average district vote, 
E(O(hYP))), and the actual election outcomes, if available. We can do so 
using equation (5), as long as we know the parameters, 3, u 2, and X. Our 
approach is to estimate the model parameters using the regression equa- 
tion (3), using current and past elections as data. Unlike in many applica- 
tions of regression modeling in the social sciences, the parameters P, a2, 
and X are not themselves the goal of our analysis but rather intermediate 
quantities, used for estimating the distribution of hypothetical election 
quantities. 

When the current election, v, has been observed, we estimate P3 by 
simply regressing v on X, yielding f3 and the usual least squares variance 
matrix, I,. For prediction, when v has not yet occurred, we run the same 
regression in the most recent year for which we have electoral results.'2 
The parameter u2 is estimated in the above regression by the usual least 
squares estimate of the "standard error of the regression," 62 = e'eI 
(n - k), where e is the vector of residuals from the regression of v on X; 
n is the number of observations; and k is the number of columns in X. 

The remaining parameter to be estimated, X, is needed when using 
the model for evaluation and counterfactual evaluation. To estimate X, 
we use the Democratic proportion of the two-party vote in the election 
following the one used to define v and regress it on v and the original 
explanatory variables, X. Since we treat our analysis as conditional on 
uncontestedness and incumbency status, we also include the values of 
these two variables for the next election period. The regression coeffi- 
cient on v is our estimate of X, which may be thought of as an intuitive 
estimate of the proportion of variation due to y, by directly estimating 

12For our later calculations, we summarize our knowledge of ,3 as a Bayesian multivari- 
ate normal posterior distribution (assuming a "noninformative" improper uniform prior 
distribution; see Box and Tiao 1973), with mean vector a = (X'X)-1X'y and covariance 
matrix By = &2(XX)-1. 
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how much the actual vote predicts the next election over and above the 
predictive power of previous values of the explanatory variables."3 Rare 
individual estimates of X above one or below zero are truncated to within 
this range. If the next election result is not available, X can be estimated 
from a recent pair of election years." 

Pooling estimates across election years. In practice, more accurate 
estimates of U2 and X may be formed by averaging the estimates obtained 
in separate regressions from several election years from the same legisla- 
ture. Since pooling in this way reduces the uncertainty in the estimates 
to essentially zero, we use the pooled point estimate instead of its distri- 
bution. Thus, we act as if we know U2 = (.2 and 2 = A for all further 
calculations. 15 

Since they are conditional on the explanatory variables, X, the esti- 
mates of U2 and A should be pooled only for elections for which roughly 
the same information is available about X. Typically, election years will 
be divided into two classes: those immediately following redistricting 
periods (and the first election in the data set), and all the others. In the 
former, the explanatory variables will not usually include the vote in the 
previous election. It makes sense to calculate two estimates of each U2 
and X by pooling within each type of election.16 

We do not advocate pooling the estimates of f3, since these param- 
eters are usually more volatile over time. In general, we want to estimate 
an electoral system using the data closest at hand, pooling only for the 
hyperparameters that seem to vary slowly over the years. 

Empirically, our estimates of u for U.S. legislative elections have 
been around 0.06, and almost always between about 0.02 and 0.12, 

13The regression estimate is formally justified by the fact that X is the coefficient of v 
in the expected value of the distribution for v(hYP) in equation (7). 

"4Another method of estimating X is based on the fact that the theoretical correlation 
between v and v(hyp) is exactly X. Although we do not observe v(hyp), we can use the empirical 
correlation (truncated to be positive) between the residuals of the regressions predicting v 
from X in two successive years. We have found that the two estimators yield roughly the 
same estimates of X in almost all empirical examples. 

15To use a distribution, instead of assuming the pooled point estimate has no uncer- 
tainty, one would need the posterior distribution of c2. This is equivalent to the distribution 
of &2 X N(n - k)2xN(flk) where XN(n-k) is a chi-square random variable with N(n - k) 
degrees of freedom, and N is the number of election years used in the pooling. Since N is 
usually quite large (number of districts multiplied by the number of election years), this 
distribution has a very small variance, making our assumption in the text empirically reason- 
able. Our extensive empirical analyses, not presented here, confirm this point in practice. 

161f precinct data are available and it is possible to follow the procedure in note 8, 
then all election years can be pooled for estimating c2 and X. 
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indicating that our explanatory variables account for the district-level 
vote to within plus or minus about six percentage points. Estimates of X 
have generally ranged from 0.2 and 0.9 (most commonly near 0.6), indi- 
cating that the proportion of the variation, not explained by X, that recurs 
in the next election varies greatly with the electoral system and the ex- 
planatory variables used. We also find that results are usually very robust 
to even moderate changes in estimates of X and u. 

4. The Distribution of Hypothetical Votes 

In this section, we give the distribution of v(hYP), so that we can 
generate multiple hypothetical election results, as in Table 1, and eventu- 
ally point estimates and standard errors of our quantities of interest. For 
prediction, v is unknown, so the goal is the unconditional distribution, 
P(v(hYP)). For evaluating an election that has already occurred, we use 
the information in v, which is available, and derive the distribution of 
v(hYP) given v, P(v(hYP) 1 v). In either case, the distribution for v(hYp) is implic- 
itly conditional on X(hYP) and 8(hyp) as well as o2 and X (since we take o2 
and X as fixed after their estimation in section 3). We describe how to 
calculate quantities of interest and their uncertainty from these distribu- 
tions in section 5. 

4.1. The Predictive Distribution of Future Elections 

We give the predictive distribution first because it is a simpler special 
case. Predictive uncertainty has two components: first, the fundamental 
variability represented by the parameter u2, the variance of the district 
election results in v, conditional on the explanatory variables X, and 
second, the uncertainty due to our estimation of IB, as modeled with the 
distribution in equation (10). If we had an infinite number of electoral 
districts, estimation uncertainty would drop to zero, but o2 would not 
change. We include the variance due to estimating P3 in our analysis, 
which in practice is a relatively smaller addition to the o2 from the model, 
although it does vary across districts, unlike Y2.17 

The technical derivation appears in Appendix B, ultimately produc- 
ing the following predictive distribution of hypothetical election results: 

P(V(hYP)) = N(v(hYP) X(hYP)13 + 8, X(hYP) X(hYP)1 + u2) (6) 

This is the unconditional Normal distribution of v(hYP), from which we can 
calculate the hypothetical election results, as in Table 1, and then the 

17Another possible source of variance is uncertainty in X and 8, which we do not 
model mathematically. Instead, if these explanatory variables are unknown, we would just 
compare several analyses, with the uncertain variables set at different reasonable values. 
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distributions of various summaries of the electoral system. The param- 
eters X and My do not appear in equation (6) and are therefore unnecessary 
for prediction.18 This is a familiar result in econometrics (e.g., Goldberger 
1991, 175-76) and indicates that "predicted values" can be calculated as 
usual with the possible addition of a statewide swing parameter: X(hYP) p 
+ 8. The uncertainty of these predictions is given by the distribution and 
variance in equation (6). 

4.2. Evaluating an Existing Electoral System under Actual or 
Counterfactual Conditions 

We now present the distribution of hypothetical votes for historical 
elections. Since the distribution of hypothetical votes for evaluating 
counterfactual conditions produces actual evaluations as a special case, 
we save space by including only the general result here. 

When designing counterfactual scenarios, one should be careful in 
specifying X(hYP) and deciding exactly what conditions to be held constant. 
For example, what if a term limitation initiative had swept the nation 
before the last election, and all the incumbent members of Congress were 
forced to retire? How would this have affected the electoral system?19 
The only practical difficulty is precisely defining the conditions under 
which the election would be held-in our model, the explanatory vari- 
ables, X(hYP) and statewide swing 8(hyp) (or E(G(hYP))). One possible defini- 
tion of this particular counterfactual scenario is as follows. Obviously, 
no incumbents run for reelection, so the column of X(hYP) indicating in- 
cumbency status should have all zeros. With all seats open, it is also 
reasonable to assume that all the districts are contested. Now, instead of 
setting E(13(hYP)), we can just set the aggregate partisan swing, 8(hyp), to 
zero, making the assumption that nothing else systematic changes but 
incumbency and contentedness. With all these variables set, the hypo- 
thetical elections can be modeled as in this section. 

In general, when designing counterfactual scenarios, it is important 
to control only for variables that happened before the intervention of 
interest (see King 1991b). For example, when supposing that no incum- 
bents will run for reelection, measures of campaign contributions and 

18To account for the uncertainty from estimating Cr2 explicitly, the normal distribution 
would be changed to a Student's t distribution with n - k degrees of freedom. However, 
pooling the estimate of C2 across elections, as we recommend, makes the degrees of freedom 
large, and the normal distribution in this situation approximates the t quite well. 

191n the absence of the term limit threat, King and Gelman (1991) asked what the 
electoral system would have been like had the incumbency advantage suddenly disappeared, 
in order to understand the effect of the incumbency advantage on postwar U.S. House 
elections. 
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candidate quality, for both incumbents and challengers, should be dis- 
carded (or appropriately modified). Campaign contributions and the deci- 
sion of opposing candidates of quality to run for election are both largely 
decided after the incumbent's reelection intentions are known and in part 
the consequence of incumbency advantage. 

The technical details of our derivation appear in Appendix C. The 
result, which appears complicated at first, is the following Normal proba- 
bility distribution of hypothetical district election results given observed 
votes: 

P(V(hYP)I V) = N(v(hYP) v + (X(hYP) - AX)g + 5(hyp) 

(1 - X2)o'I + (X(hYp)- XX)j0(X(hYP) -X)'). 

A good way to understand this result is to focus on the special case 
where we are analyzing the actual election, and therefore X(hYP) = X and 
8(hyp) = 0. In this case, the expected Democratic proportion of the two- 
party vote in district i from equation (7) simplifies to 

E(v hYP)Iv) = Xv + (1- X)Xr, (8) 

a weighted average of the observed vote, v, and the vote predicted from 
past elections, XP. 

Considering only v (the correct estimate if X = 1) produces the dis- 
credited uniform partisan swing assumption, while the other extreme of 
using only X3 (if X = 0) wrongly ignores the information from the current 
election, which is obviously relevant to estimating the current electoral 
system even after taking into account one's predictions. To put it another 
way, X is a parameter that determines which estimator of the form Xv + 
(1 - X)XP is most effective at estimating the district-level results of 
another election, v(hYP), from the same electoral system (i.e., if everything 
were the same up to the start of the campaign and the campaign and 
election were run again). Thus, in characterizing the expected value of 
the distribution P(v(hYP) I v), we clearly want to use our prediction Xr3, and 
we also want to use the systematic and persistent aspects of v not pre- 
dicted by X3. The question is how much to weight v and XP; X is the 
weight and our method of estimating X provides an answer. 

We also use the entire distribution, including the variance of the 
predictive equation, to generate hypothetical election results like those 
in Table 1 and ultimately to obtain expressions of the uncertainty associ- 
ated with various summaries of the electoral system. 

5. Calculating Summaries of Electoral Systems 

Once the distribution of hypothetical election results has been ob- 
tained, using either equation (6) for prediction or equation (7) for actual 
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or counterfactual evaluation, we calculate various summaries of interest 
of the electoral system and their standard errors. These may include, for 
example, district-level vote and seat forecasts, partisan bias, electoral 
responsiveness, the number of incumbents who are reelected, and others 
listed in section 1. 

The general methodology we introduce to accomplish these tasks is 
called "Bayesian simulation," although it could as easily have been 
called "approximating conditional probability distributions by drawing 
random numbers." It is also intuitively explained in Table 1. To explain 
the exact mathematical procedure intuitively, section 5.1 shows how to 
calculate one feature of the electoral system-forecasts of district vote 
proportions-that can be calculated analytically. Section 5.2 demon- 
strates how to calculate these and other summaries with Bayesian simula- 
tion. We then turn to other features of an electoral system for which 
Bayesian simulation works, but no analytic solution is available. No new 
assumptions are introduced in this section; we show only how to re- 
express the simulations of district-level vote proportions in more useful 
formats. Bayesian simulation should be widely applicable to many politi- 
cal science problems, beyond those we describe here. 

5.1. District-level Vote and Seat Predictions: Analytic Solution 

We can predict district vote proportions using our estimate of the 
expected vote in each district, E(v~hYP)), the average over the range of 
possible hypothetical election results, v~hYP). We calculate this from the 
expected value of the multivariate normal distribution from either equa- 
tion (6) for prediction or equation (7) for actual or counterfactual evalua- 
tion. For example, the vector of district-level predictions for the Demo- 
cratic proportion of the two-party vote is X(hyp) h + 8(hyp). The variables 
in X(hYP) are chosen at the start, and 3 is estimated as part of the pro- 
cedure. Only the constant, 8(hyp), needs to be specified. For most pur- 
poses, 8(hyp) will be set to zero, but to simulate statewide swings it will 
also be useful to set it to other values. For example, we could set 8(hyp) 
so that the average district vote takes on several specified values, such 
as those of the last several elections, to see how the predictions depend 
on the statewide partisan swing. 

To calculate standard errors for the predictions, we can use the stan- 
dard deviation of the same multivariate normal distribution. However, in 
this case, and most others, one can calculate two types of standard errors, 
based on either the predictive uncertainty or only the uncertainty in the 
expected value. For district-level vote predictions, total predictive uncer- 
tainty is probably most relevant. However, if one wishes a summary of 
only the uncertainty in where the expected vote is, then only the estima- 
tion uncertainty should be used. 
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The standard errors based on the total predictive uncertainty are 
merely the square roots of the diagonal elements of the variance matrix 
in equation (6), X(hYP)JOX(hYP), + U21 (or equation 7 for actual or coun- 
terfactual evaluation). For standard errors based only on the estimation 
uncertainty in the expected district vote, we would take the square root 
of the diagonal elements of only the first term in the variance matrix, 
such as X(hYP)JX(hYP), for prediction. 

Another useful way to summarize the uncertainty for district-level 
predictions is to focus not on votes but on the probability that the election 
in district i goes for the Democrat (or Republican), 

P(Democrat wins) - P(v~hYP) > 0.5) 1 
~~~~~~~~~~~~(9) - 

[E(v(hYP)) - 0.51 

L var(v(hYP))l/2 I 
where '1 is the standard normal cumulative distribution function. When 
aggregated over all districts, these probabilities provide a better measure 
of Democratic strength than counting the number of districts with 
E(v(hYP)) > 0.5. For example, if all the districts in a state have E(v(hYP)) 
= 0.49 and var(v~hYP)) = 0.072, then, for each district, P(Democrat wins) 
= 'I(- 0.01/0.07) = 0.44. However, we certainly would not expect every 
Republican candidate in the state to win; with enough districts, even 
small probabilities will produce at least some Democratic wins. 

5.2. An Introduction to Bayesian Simulation 

Bayesian simulation allows us to summarize the electoral system 
using observable quantities of immediate interest. In contrast, just re- 
porting regression coefficients or some other model estimate may require 
convoluted reasoning to translate into something with substantive politi- 
cal meaning. 

For many summaries, one can calculate exact analytic solutions di- 
rectly from the expected values in either equation (6) or equation (7), as 
was done in section 5.1. In general, though, simulation is the easiest 
approach to computing estimates and standard errors of summaries of 
the distributions we have derived. It is frequently easier, computationally 
faster, and simpler to understand than the analytic solution. 

For example, suppose one has a distributionf(y) and wishes to calcu- 
late its expected value. The formal "analytic" method would be to com- 
pute the integral, E(Y) = f'x yf(y)dy, which is difficult or impossible in 
many cases, especially if y represents a large vector of dependent random 
variables. Fortunately, if random draws can be obtained from this distri- 
bution (a task that is often easy, especially with modern computers), it 
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is possible to use sampling theory to approximate the expected value to 
an arbitrary degree of precision. That is, one merely takes a large number 
of random draws from this distribution and averages them. The desired 
degree of precision can be attained by merely increasing the number of 
draws. We apply this same logic to our distributions and theoretical fea- 
tures with any degree of complexity. 

Simulating hypothetical elections from our model requires three 
steps: 

1. Create a large number, m, of simulated hypothetical election re- 
sults, v(hYP), by taking random draws from the multivariate normal 
distribution (in equation 6 or 7). Each election result is a vector 
of length n, v(hYP) = (v(hYP), . .. , v(hYP)) and is portrayed as a col- 
umn in Table 1. 

2. For each simulated vector of hypothetical election results v(hYP), 
calculate the desired descriptive summary (e.g., vote in district 
4, vhyp); expected seats given average district vote set at 0.5, 
E(9j Q = 0.5); or the proportion of districts with between 0.25 and 
0.5 probability of a Democratic win). This is Q(hYP)i in Table 1. 

3. Calculate the mean and standard deviation of the m summaries 
(as in equations 1 and 2); these constitute the point estimate and 
its standard error, respectively. 

If it were possible to use an infinite number of simulations (m -o), 
this procedure would yield exact standard errors and point estimates. 
For most purposes, m = 100 suffices to produce sufficiently precise 
approximations. 

Perhaps the only unfamiliar technical issue involved here is how to 
draw values randomly from one of the two multivariate normal distribu- 
tions. Fortunately, the solution to this problem is quite simple. To create 
a single simulated hypothetical election outcome (one of the m required 
in the description, above):20 

1. Draw one random vector, 30, from the posterior distribution for 
P3 (see equation 10). 

2. If the current election, v, has been observed, insert P3 into the 
distribution for -y I P3 (see equation 15), and draw a vector, -y0, from 

200ne might think that draws from the posterior distribution of v(hYP) might easily be 
obtained directly from the appropriate normal distribution (equation 6 for prediction or 
equation 7 for observed elections), using some method like the Cholesky decomposition 
applied to the covariance matrix. However, that approach requires inverting an n- 
dimensional matrix, a task that is not desirable or even possible here because the covariance 
matrixes are singular. 
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this distribution. In prediction, for which v has not yet occurred, 
skip this step. 

3. Finally, for prediction, insert P3 into the distribution P(v(hYP)| ) 
(see equation 11), or for evaluation or counterfactual evalua- 
tion insert (30 and -y0 into the distribution P(v(hYP) y, (, v) (see 
equation 14), set 8(hyp) as you choose, and draw a single random 
vector, v(hYP), from the appropriate distribution.2' 

We now apply Bayesian simulation to calculate several more complicated 
quantities of interest, along with their standard errors. 

5.3. The Distribution of Seats Given Votes 

Following the notation of Gelman and King (1990b) and King and 
Gelman (1991), we label v and g as the average district vote and the 
average proportion of seats obtained by the Democrats in the current 
election, and "hYP) and g(hYP) for the corresponding hypothetical quantities. 
To obtain the seats-votes curve, we estimate the distribution of g(hyp), 
given Q(hyp), for a range of values of Q(hyp). Of course, our predictions and 
estimates are only as good as our model, and it is only reasonable to 
expect the model to hold over a plausible range of aggregate outcomes. 
For example, if v(hyp) is currently 0.5, and has been near that for many 
years, we would not use our model to predict what would happen in the 
case of v = 0.2; such a change would imply an electoral transition beyond 
the scope of the historical data on which the model is based. We typically 
calculate the seats-votes curve for a range of votes centered at the current 
value, such as every percentage point in the range [p(hYP) + 0.15], or 
perhaps at a conventional range such as [0.4, 0.6]. 

Whether for a predicted or hypothetical election, we can easily ob- 
tain the distribution of g(hyp), given Q(hyp), for each of a range of values, 
v', . . ., v), as follows: 

1. Using the appropriate distribution (prediction of a future election 
or actual or counterfactual evaluation of a past election), simulate 
a set of m election results, v(hYP), given some arbitrary value, v(?) 
(or the corresponding value of 8(hyp)), for the average district vote. 

2. For j = 1, 2, . . . , 1: 
a. Add the constant, vj) - v(O), to each component of each simu- 

lated vector, v, produced in step 1. No new simulations are 
required. 

21The distributions in equations (11) and (14) have diagonal covariance matrices, so 
this last step requires draws from independent normal distributions. 
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b. Calculate 9(hYP) for each simulated election; the set of these 
m values estimates the distribution of g(hyp), given p(hYP) = 
v(j). In particular, the sample mean and standard deviation 
of the m values provide estimates of E(9(hYP) |(hYP)) and 

V~ar(g(hYP) j (hYP)) respectively. 

One can then plot the seats-votes curve with dotted lines at two standard 
deviations above and below the seats-votes curve, to indicate the region 
where, according to the model, 95% of predicted elections will fall. 

In addition to summarizing our uncertainty in any given prediction, 
the standard errors make our predictions testable: we can run the model 
on a past election, make a prediction, and then see whether about 95% 
of the election outcomes fall in the 95% region. Repeating this over many 
past elections, we can see whether our assessments of uncertainty are 
accurate. 

5.4. Bias and Responsiveness 

We can calculate bias and responsiveness (along with standard er- 
rors) with the same simulations used for the seats-votes curve. We define 
four quantities of interest: 

* Responsiveness as Q(hYP) ranges from 0.45 to 0.55: the average dif- 
ference, [E(g(hYP)I i(hyp) = 0.55) - E(P(hYP) iv(hyp) = 0.45)], divided 
by the vote swing, 0.55 - 0.45. If the electoral system one is 
studying regularly produces average district votes at or near this 
interval, then this is a reasonable estimate to evaluate the respon- 
siveness of the electoral system. For example, a responsiveness 
of 2.3 means that a 1% increase in the average district vote for a 
party across districts will translate into an expected 2.3% increase 
in seats for the same party in the legislature (plus or minus the 
estimated standard error). The responsiveness is of interest to 
people concerned that redistricting plans will be drawn to protect 
incumbents from vote swings. In addition, scholars at least since 
Mayhew (1974) and Erikson (1971) have been interested in the 
responsiveness of the U.S. House and other legislatures. 

* Responsiveness at a chosen value v0 (such as the actual average 
district vote): the average difference, [E(g(hYP) j (hyp) = V0 + 0.01) 
- E(Q(hYP)jv(hyp) = vo - 0.01)], divided by the vote swing, 0.02. 
One must be careful with this measure, however, since it tracks 
with v0; even if the electoral system is unchanging, a change in v 
moves the system to a new point on the seats-votes curve, and a 
new local responsiveness. On the other hand, setting v0 to the 
observed v is an unquestionably realistic point. 
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* Average partisan bias between p (hyp) = 0.45 and Q(hyp) = 0.55. We 
define partisan bias as the deviation from partisan symmetry. For 
example, if one party is able to translate 55% of the average district 
vote into 75% of the seats in the legislature, then it would be sym- 
metric for the other party, if it were to receive 55% of the average 
district vote, to also receive 75% of the seats. We follow King and 
Browning (1987), King (1989a), and Gelman and King (1990b) and 
define partisan bias as the proportion of the seats in the legislature 
the Democrats receive over and above what is fair. For example, 
if partisan bias is -0.05, then the Democrats receive 5% fewer 
seats in the legislature than they should under the symmetry stan- 
dard (and the Republicans receive 5% more seats than they 
should). 

* Partisan bias at p (hyp) = 0.5: the average value of g(hYP), given v(hyp) 

= 0.5, minus 0.5; that is, E(&(hYP) I Q(hYP) = 0.5) - 0.5. This is inter- 
preted in the same manner as above, but is most appropriate for 
very competitive electoral systems. This partisan bias statistic is 
the expected proportion of the seats over 0.5 that the Democrats 
receive when they receive exactly half the average district vote. 

In all these cases, we calculate the summary for each simulated hy- 
pothetical election result, v(hYP), and then use the average of the m summa- 
ries as the point estimate and their standard deviation as the estimate of 
uncertainty (the standard error). 

The two definitions of bias presented above will generally produce 
very similar results because it is rare to see an electoral system whose 
districts are all clustered around 0.5. In most situations, we prefer bias 
averaged from 0.45 to 0.55 because it allows for a realistic range of aver- 
age district vote, v. For the same reason, we prefer responsiveness mea- 
sured over a 10% vote swing; again, except at the extremes, swing has 
little effect on the estimates. 

We allow responsiveness to be defined at any value of the average 
district vote; 0.5 is often a natural reference point, but it is frequently 
more reasonable to use a value nearer to typical election outcomes. For 
example, the average Democratic share of the vote in U.S. House dis- 
tricts has fluctuated around 0.55 for decades, and many southern state 
legislatures have never seen the average Democratic vote fall below 0.6. 

In contrast, we define partisan bias as a departure of the seats-votes 
curve from partisan symmetry, which only makes sense when centered 
at v = 0.5. In a state in which the Democrats have never achieved more 
than v = 0.2, for example, we would not trust any model to make assump- 
tions about what might happen if they suddenly received half the vote. 
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This is especially important when considering minority representation 
(see King, Bruce, and Gelman 1993). 

5.5. Other Summaries 

The flexibility of our Bayesian simulation-based method allows us to 
estimate any summary of the predicted or hypothetical elections, not just 
the specific quantities discussed above. 

For example, suppose we are evaluating a redistricting plan and are 
interested in the likely reelection rate: the proportion of incumbents, of 
both parties, who will win their bids for reelection. For purposes of the 
prediction, we shall assume that we know which incumbents will run 
for reelection, and that the statewide partisan swing, 8(hyp), is zero. The 
following procedure, again using the m simulated predicted elections 
vthYP), creates an estimate and standard error for the reelection rate. 

1. Simulate m vectors, v(hYP), of hypothetical elections, given the 
specified values of X(hYP) and 8(hyp). 

2. For each set of hypothetical election results, compute the propor- 
tion of incumbents who win reelection. That is, count the number 
of hypothetical districts with incumbents whose vote, vihYP), ex- 
ceeds 0.5 (for Democrats) or is less than 0.5 (for Republicans) 
and divide by the number of incumbents running. 

3. The resulting set of m proportions approximates the distribution 
of the reelection rate. If we wish, we can summarize the distribu- 
tion with estimates of its expected value and corresponding stan- 
dard error by calculating the mean and standard deviation of the 
m values. 

To include a more realistic assessment of uncertainty, one should 
repeat the above analysis with a range of plausible values of 8(hyp) (or 
E(Q(hYP)) = 8(hyp) + 2i J(X(hYP) )i), rather than merely setting 8(hyp) = 0. 
Reasonable values of average district vote may be obtained by examining 
a graph of v in recent elections, or more formally using a forecasting 
procedure. Repeating the above analysis with k different values of 8(hyp) 
yields km simulated vectors v(hYP), from which means and standard devia- 
tions of all quantities can be estimated, as before. 

For another, more complicated, example, suppose we are interested 
in the number of "marginal seats" in an electoral system, which we shall 
define (for convenience) as seats with at least one chance in four of 
changing parties if the election were to be repeated with the same pattern 
of uncontested seats and incumbents. We shall assume, to be specific, 
that in the hypothetical repeated election, a statewide partisan swing of 
up to two percentage points from the current value, v, could occur in 
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either direction. We can estimate the number of marginal seats, so de- 
fined, as follows. 

1. Perform the preliminary estimation as described in section 4. 
2. Simulate f30 and, if v has been observed, -y, using steps 1 and 2 

of section 5.2. 
3. Perform the following steps 100 times, to obtain 100 simulated 

vectors, v(hYP). 
a. Simulate one hypothetical election result, v(hYP), with average 

district vote equal to the current v, following step 3 of section 
5.2. 

b. Add the shift, 8(hyp), to all districts in the vector v(hyp), where 
8(hyp) is drawn at random from a uniform distribution with range 
[-0.02, + 0.02]. 

4. For each district, count the number of times the seat changed 
parties (i.e., that v hYP) > 0.5 if the observed vi < 0.5 and vice 
versa). If a district changed parties in at least 25 of 100 simula- 
tions, it is "marginal." Compute the proportion of marginal dis- 
tricts out of the n districts. 

5. Repeat steps 2-4 m times, to create m simulations of the electoral 
system and m corresponding simulated proportions of marginal 
seats in each hypothetical election. Our point estimate of the pro- 
portion of marginal seats is the average of the m proportions, and 
their standard error is the corresponding standard deviation over 
the m simulations. 

6. Examples 

6.1. The U.S. House of Representatives since 1900 

In this section, we estimate partisan bias and electoral respon- 
siveness for the House of Representatives in nonsouthern states during 
this century. To begin, we define X as including a constant term along 
with inc(t), unc(t), party(t), v(t - 1), inc(t - 1), and unc(t - 1). In years 
following redistricting (i.e., those ending in "2"), we do not include the 
variables corresponding to time (t - 1), since they are not available 
without a great deal of work matching and disaggregating districts be- 
tween redistrictings. We ignore the fact that some states performed addi- 
tional redistrictings in other years.22 

22We imputed uncontested district election results at 0.25 and 0.75 and discarded the 
few cases of multimember districts and districts with third-party victories. Had there been 
many anomalous district elections, we would have to use more complicated methods to 
handle the missing data, but it did not seem worth the effort here. 
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We estimate a2 and X for as many of the years as possible. (The 
parameter X cannot be estimated for the final election before a redis- 
tricting.) We then pooled estimates for years following redistricting and 
also for all other years. For years following redistricting, our estimates 
are a = 0.091 and X = 0.663, and for all other years, & = 0.065 and A 
= 0.560. Recall that C is a proportion, so 0.065 means that we can fore- 
cast future district-level results to within about 6.5% of the vote (plus 
the error in estimating @). The relative values of these parameters are 
reasonable: in years following redistricting, compared to other years, 
we have less information (fewer variables) in X; as a result, predictive 
uncertainty, as measured by (r, is higher. In addition, when estimating 
hypothetical election results, the variables in X, representing past elec- 
tions, are less useful immediately following redistricting, and so A is 
higher, as it should be. (The parameter A is highest when v(hyp) is estimated 
solely from v and is lowest when only X is used.) 

Figure 1 plots partisan bias (with E(13(hYP)) from 0.45 to 0.55). A stan- 
dard error bar appears at the top of the graph. Most small year-to-year 
changes in bias are within a standard error or two, indicating stochastic 
variation, rather than a systematic change in the underlying electoral 
system. However, the long-term systemic trends are quite substantial. 
The evidence demonstrates unambiguous bias in favor of the Republican 
party from the 1930s until the mid-1960s. After that, the trend toward 
Democratic bias is consistent and sustained. The pattern during the first 
two decades of this century is less clear, and the standard errors are 
much larger. These substantive results are close to those produced by 
the more complicated, and computationally intensive, model of King and 
Gelman (1991) for the period they examined, 1946-86. The explanation 
for the trend since the mid-1960s is the growth in incumbency advantage 
from about 2% to nearly 12% by the late 1980s. 

Figure 2 displays the estimates of electoral responsiveness (with 
E(13(hYP)) set to the actual average district vote, v) of the U.S. House 
during the same period, evaluated at the observed average district vote. 
For comparison, the figure also presents this same summary calculated 
with the assumption of uniform partisan swing. On average over many 
years, the two methods produce roughly the same results, but the uniform 
partisan swing estimate is much more variable, an indication that it is 
fitting transient year-to-year changes instead of the long-term systematic 
patterns of interest. This relative "statistical inefficiency" reflects the 
fact that uniform partisan swing uses only the information in v, whereas 
our model uses information in v as well as in the predicted values X3 
(see equation 8). As a consequence, uniform partisan swing might yield 
reasonable estimates on average over a century, but it can be far from 
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accurate for any one year, or even as an average over a small number of 
years. In addition, the implied standard errors of uniform partisan swing 
are all zero, which corresponds to the incredible assumption that, given 
v and p(hyp), the hypothetical election outcomes, v(hYP), are exactly known 
and implies that all summaries of the electoral system are known per- 
fectly. Our method is estimated one year at a time. Thus, the smoothness 
of the resulting estimates is not an artifact but is due to a lower level 
of estimation error resulting from the much larger quantity of information 
extracted from the same data in each election used to make the desired 
inference. 

Evaluating predictive uncertainty estimates. To illustrate the accu- 
racy of forecasts made with our model, and most important, the accuracy 
of the uncertainty estimates implied, we predict the U.S. House of Repre- 
sentatives in 1988. As an example, we use as explanatory variables dis- 
trict election results of 1986 and incumbency and uncontestedness of each 
district for 1986 and 1988, variables that are typically available months 
before the election. In state legislative elections, our forecasts will fre- 
quently be better because better explanatory variables, such as votes 
for statewide offices broken down into legislative districts, are usually 
available. We could also improve forecasts of these U.S. House data 
with other variables, such as campaign spending, scandals, candidate 
quality, and the like, but our primary purpose here is to evaluate the 
model's uncertainty estimates, not to produce the best possible predic- 
tions. As usual, we only predict the relative district election results; for 
convenience, we shall assume that the nationwide partisan swing, 8(hyp), 

is zero. 
To apply our model, we first estimate the parameter P by predicting 

1986 from 1984, which is, in fact, the same estimation done above for 
evaluating the electoral system. We then draw from the distribution of 
predicted 1988 elections, using the estimated P and the pooled estimate 
of U2 obtained above. 

For each district, i, we label the means of the simulated predictions 
as vi and the actual election result as vi. We would like to evaluate our 
model by comparing the prediction errors, vi - vi, to the standard errors 
of the district election predictions.23 Figure 3 plots the prediction errors 
versus the observed election outcomes. A solid line appears at the nation- 
wide partisan swing, and dotted lines are displayed at plus and minus 

23Before making this comparison, we correct for the nationwide partisan swing, which 
we do not try to predict with our model. From 1986 to 1988, the average Democratic district 
vote swung from 57.2% to 56.6%. 
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twice the average predictive standard error. If the uncertainty estimates 
are exactly correct, 95% of the prediction errors would fall within the 
dotted lines on average; the actual result in this case was 96.4%.24 

We also evaluated the accuracy of our uncertainty estimates by com- 
paring the average of the squared actual prediction errors from the predic- 
tion model with the estimated prediction variance from the model (the 
average of the diagonal elements of the variance in equation 7). The 
average of the observed squared prediction errors was 0.0652, which is 
slightly smaller than the average predicted variance, 0.07 1 2. 

The fact that the predictive standard errors in Figure 3 and the pre- 
dictive error variance just calculated are so close to their theoretical 
values is very strong confirmation of our model and of the accuracy of 
the uncertainty estimates it produces. Moreover, our extensive analyses 
of thousands of other elections and with different sets of explanatory 
variables give the same consistent support for our model and its uncer- 
tainty estimates. 

Some may view the uncertainty estimates reported here as large. 
In part, this is because almost all existing election forecasters calculate 
uncertainty estimates incorrectly, and so those presented here are among 
the first correct estimates published (see Beck 1992; Greene 1993). They 
can be reduced by including explanatory variables based on more detailed 
knowledge of the district election results, such as campaign spending, 
scandals, candidate quality, relative campaign effectiveness, and the like. 
In our experience, the state of knowledge about elections is unlikely to 
reduce our uncertainty by more than half the illustrative values we report 
here. Most important for present purposes is that the figures reported 
here demonstrate that our model produces accurate uncertainty esti- 
mates. With this model and computer program, scholars can process 
correctly whatever explanatory variables they are innovative enough to 
collect.25 

241f the absolute values of the prediction errors were consistently too low, our model 
would be overstating our predictive uncertainty, yielding overly cautious predictions. High 
absolute prediction errors would imply that the predictions are less accurate than expected, 
yielding overconfident predictions. The former wastes information; the latter risks incorrect 
inferences. 

251In an earlier version of this paper, Figure 3 had four points that appeared to be true 
outliers because they stood more than four standard deviations away from their predicted 
values. In fact, these turned out to be coding rather than prediction errors, and our model 
does fit quite well. In practice, the existence of a few real outliers, were they to occur, 
would not greatly affect most of the electoral summaries we calculate, such as bias, respon- 
siveness, number of incumbents to lose reelection, etc. 
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EVALUATING REDISTRICTING PLANS 545 

6.2. Redistricting the Ohio Legislature 

Legislatures and courts are often called upon to evaluate competing 
redistricting plans. We show here how our method can be applied to this 
problem by estimating partisan bias for elections held in the lower house 
of the Ohio state legislature from 1968 to 1990 and by predicting partisan 
bias for each of three redistricting plans proposed for the legislature in 
1992. 

For the current districts and the proposed redistricting plans, we 
use the following explanatory variables: incumbency, uncontestedness, 
previous vote for the state House, all available statewide races broken 
down into current or proposed legislative districts, and the proportion of 
African Americans of the voting age population in the district. We esti- 
mate the parameters, A, a2, and X with these explanatory variables for 
current districts, the latter two pooled over the years. 

During the period 1968-90 to which our data apply, elections have 
been held under three redistricting plans. The long solid line in Figure 4 
demonstrates the consequences of these redistricting plans by tracing the 
degree and direction of partisan bias (estimated from 0.45 to 0.55 average 
district vote) in the Ohio State House of Representatives. In 1971 the 
redistricting process was controlled by the Democratic party, which man- 
aged to implement a substantial gerrymander, one that has been found to 
have caused the largest effect on partisan bias ever noted in the academic 
literature (Gelman and King 1990b). The Democrats controlled the redis- 
tricting process in 1981 and made few changes from the 1971 plan; parti- 
san bias did not change significantly. As a result, the electoral system in 
the Ohio State House favored the Democratic party consistently over the 
last 20 years, giving them 3%-4% more seats (and the Republicans 3%- 
4% fewer seats) than they would have been expected to receive in an 
electoral system without bias. 

In the 1992 apportionment process, the Republicans controlled three 
of the five seats on the Apportionment Board. They delegated the map- 
ping process almost entirely to James Tilling, secretary to the board and 
staff director of the Senate Republicans. According to his account, Tilling 
knew the current districts heavily favored the Democrats, and he set out 
to rectify this situation. However, he reports having decided to draw fair 
districts, rather than turning a Democratic gerrymander into a Republican 
gerrymander. His reasoning was that this would produce a fair result for 
the voters of Ohio, but it would also benefit his party, in comparison to 
the existing districts. Of course, it would not benefit the Republicans as 
much as it could have, so the Republican party produced a competing 
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EVALUATING REDISTRICTING PLANS 547 

plan and tried to get it adopted. The Democrats tried the same, but the 
Apportionment Board stuck with Tilling's plan.26 

Figure 4 also displays the predicted 1992 results for the three pro- 
posed redistricting plans using corresponding explanatory variables based 
on reaggregated electoral results from 1984 to 1990. We use the variability 
in our explanatory variables from 1984 to 1990 in this way to portray our 
uncertainty in their actual values, and the actual electoral conditions, 
that could obtain in 1992. Thus, our predictions for partisan bias in 1992 
are plotted on the right side of Figure 4 at each of these four election 
years. 

As can be clearly seen, the partisans' plans favor their own parties, 
and the Apportionment Board plan lay in between. A summary of the 
results, with standard errors of these summaries, also appears on the 
figure.7 On average, both the Democratic and Republican plans would 
bias the electoral system by about 2.2% in their favor. The Tilling plan, 
adopted by the Apportionment Board, is forecast to have approximately 
zero partisan bias. The standard errors indicate that our estimates are 
fairly precise; both partisan plans are clearly distinguishable from zero 
bias, whereas the Tilling plan cannot be distinguished from zero. Inter- 
estingly, even the Democratic plan was slightly less biased toward the 
Democrats than the actual results from the late 1980s. Perhaps the Demo- 
crats wanted to draw a plan that would be reasonable enough to be ac- 
cepted by the courts; both parties also appeared more concerned about 
other issues, such as protecting the particular incumbents currently in 
office. 

We finished the analyses in this paper well before the 1992 elections 
and widely distributed the results of an earlier draft; they were also pre- 
sented in court and are on the public record. After the election, we esti- 
mated partisan bias from the actual election results. This result, a partisan 

26In response to a suit brought by the Apportionment Board, the Ohio state court 
declared the districts constitutional according to Ohio law. The Democratic party then 
brought suit before a three-judge federal panel charging the board with creating a political 
gerrymander under the guise of the Voting Rights Act. However, the plaintiffs offered no 
evidence about partisan bias and, after the information in Figure 4 was presented at the 
trial, effectively withdrew their partisan gerrymandering claim. The Court invalidated the 
Apportionment Board plan, essentially on grounds of reverse discrimination. This decision 
was stayed by the U.S. Supreme Court, meaning that the 1992 elections for the Ohio House 
were held under the Ohio Apportionment Board's redistricting plan. The Supreme Court 
later reversed the lower court, leaving the districts in place for the rest of the decade 
(Voinovich v. Quilter 1993). 

27The standard error of each point is of course larger than the standard error of the 
average reported in the figure. 
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bias of 0.007 (with a standard error of 0.010) differs from the predicted 
bias by a trivial amount, not statistically distinguishable from our predic- 
tion of zero. This result appears as a solid triangle at the right of Fig- 
ure 4. This result therefore provides further evidence in support of the 
model and its uncertainty estimates. Moreover, an analysis of the individ- 
ual district forecasts produced correct seat predictions in every district. 

7. Discussion 

Instead of summarizing the contributions of this paper, we focus in 
this concluding section on how it differs from the previous method pro- 
posed in the literature, published in King and Gelman (1991). The most 
important improvement in our model is the introduction of explanatory 
variables, which add considerable additional information to the analysis 
and give us substantial leverage and statistical efficiency for most prob- 
lems. Including explanatory variables also enables us to integrate the 
study of counterfactual evaluations directly and to make predictions 
based on stable and verifiable relationships in existing legislative elections 
data. Any information lost by introducing various simplifications is more 
than compensated for by the information in these explanatory variables. 
If explanatory variables are not available, then the King and Gelman 
(1991) method should be used instead of the one we propose here (e.g., 
Jackman, forthcoming). 

Because our previous model had no explanatory variables, it had to 
model the well-known bimodal pattern of district vote outcomes, and it 
did so by fitting it to a mixture of normal distributions. By requiring the 
inclusion of either partisan control or incumbency status as explanatory 
variables, we avoid this complication: conditional on these explanatory 
variables, voting data are unimodal and reasonably modeled by a single 
normal distribution and the random components regression model we 
introduce. 

We model district vote proportions directly, without the logit trans- 
formation used in King and Gelman (1991). The loss is very slight because 
contested district vote proportions above 0.8 or below 0.2 are rare. This 
greatly simplifies the analysis, eliminating the third-order Taylor series 
approximations previously used to compute expected values. 

Finally, we singly impute votes in uncontested districts (Appendix A), 
avoiding the complication of estimating a distribution for what could have 
happened had the elections been contested, as in King and Gelman 
(1991). 

Since our approach can be evaluated in new legislative elections 
data, as we did in our examples here, it will always outperform methods 
of forecasting and evaluation based on plausible but unchecked assump- 
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tions. One example is the use of "baseline" votes, the votes for a low- 
visibility office elected statewide and broken down into legislative dis- 
tricts, for forecasting or, in combination with uniform partisan swing, for 
evaluations (as suggested by Backstrom, Robins, and Eller 1978).28 Since 
the baseline vote can be used as an additional predictor (another column 
in X in our model) and since our method enables the relationship between 
this variable and the legislative elections of interest to be estimated rather 
than assumed, our approach is guaranteed to do better. In addition, our 
approach has the advantage of using the same model to make district vote 
predictions and statewide evaluations, guaranteeing internally consistent 
results. 

While one can use this model (and the associated computer program) 
for many different types of analyses of legislative elections, there are a 
number of topics for future research that remain worthy of study. The 
model does not deal with multimember districts, primaries, nonpartisan 
elections, or multiparty elections. It is also not yet equipped to handle 
other types of electoral systems, such as the various types of proportional 
representation, more common in other countries. 

Manuscript submitted 5 October 1992 
Final manuscript received 10 August 1993 

APPENDIX A 
Vote in Uncontested Districts 

Depending on the goal of the analysis, one may consider adjusting the vote, vi, in 
uncontested districts. This is especially important in evaluating a redistricting plan, since 
one wants to evaluate the effect on actual or potential voters; decisions taken away from 
the voters, such as when candidate decisions make voting for one party impossible, require 
special treatment. Adjustment is particularly important when studying electoral systems 
with a small number of districts, such as a congressional delegation in one state, or with a 
large number of uncontested seats. 

Adjustment is used to make the votes reflect what the election would have been like 
had the district election been contested. For prediction of election outcomes, any reasonable 
adjustment preserves the same result: a win for the single contesting candidate. In contrast, 
when we summarize an electoral system by the seats-votes curve, bias, and responsiveness, 
or the expected proportion of marginal seats, the assignment of votes to uncontested dis- 
tricts has an effect because it alters v and, thus, the average district vote, without changing 
the number of seats won by either party. Imputing values other than zero or one tends to 
reduce v for the party that wins more uncontested seats, thus increasing the apparent 

28Statewide measures of partisan bias and electoral responsiveness, and some other 
issues, are discussed by King and Browning (1987), Cain (1985), Grofman (1983), King 
(1989a), Niemi (1985), and Niemi and Fett (1986). 
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partisan bias in their favor. That is, imputation reduces the number of apparently "wasted" 
votes in uncontested districts. 

For many applications, we believe some imputation for uncontested districts is essen- 
tial. One can examine the votes in districts before and after being uncontested, or look at 
district totals in statewide races and observe partisan strength that is generally closer to 
25% and 75% than zero and one. In defining the properties of the electoral system or 
evaluating the effects of redistricting, it seems reasonable to be interested in how many 
seats a party receives as a function of its aggregate statewide support. The fact that a seat 
is uncontested is an indication of strong support in a district, but certainly not 100% support. 

There is, of course, room for debate on what values to impute. Three relatively simple 
options include keeping the vote proportions at zero and one; imputing common values 
such as 0.25 and 0.75 for Republican and Democratic uncontested districts, respectively; 
or imputing values from elections in the same districts but different years.29 

After considerable experimentation, we suggest the following method. First, we tempo- 
rarily impute values 0.25 and 0.75 for Republican and Democratic uncontested seats. Sec- 
ond, we regress the vote v on the same explanatory variables X as in our model (equation 3). 
If the legislative district vote for one or more years is included among the explanatory 
variables, we temporarily impute 0.25 and 0.75 for these too, even though the focus of this 
regression is creating amputations for the dependent variable. Finally, we create an imputa- 
tion for each uncontested district i by calculating xi 3 + Fi, where xi is row i of the explana- 
tory variable matrix X, and Fj is a single random draw from a normal distribution with mean 
zero and variance estimated as part of this regression. We then use these amputations for 
uncontested districts, along with the actual vote in the contested districts, in all subsequent 
analyses. 

This procedure produces more accurate and efficient amputations and is logically 
consistent with the rest of our model, while incorporating the uncertainty in making these 
amputations in any final estimate or summary. The uncertainty is introduced in our method 
by the addition of a random Fi for each district instead of using only the fitted values (xi I), 
a version of Rubin's (1987) "multiple imputation" method for nonresponse in surveys.30 

APPENDIX B 
Deriving the Predictive Distribution of Future Elections 

The predictive distribution of v(hYP) discussed in section 4.1 can be derived by classical 
methods in econometrics. However, we present a different, Bayesian derivation of this 
result here in order to introduce this method in a relatively familiar case. As a result, 
explaining the distributions we derive for actual and counterfactual evaluation in Appen- 
dix C, which require Bayesian analyses, will be considerably easier.3' 

29King and Gelman (1991) arrive at the approximate value 0.75 in congressional elec- 
tions to signify the strength of a party running uncontested, by taking the average of all 
election results in districts, in the elections preceding uncontestedness (but with the same 
incumbency status). That article also demonstrates how to use an entire distribution for 
uncontested elections to incorporate the uncertainty in this process; however, we have 
found that single imputation, as we recommend in this article, is simpler and does not 
substantially alter substantive inferences. 

30A single imputation is sufficient in this context, since we are usually interested in 
summaries that average over all the districts. Independent single imputation across uncon- 
tested districts is roughly equivalent to a multiple imputation for the entire system. 

31Bayesian analysis is based on the following principles: (1) all unknown quantities, 
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To simplify our derivations, we introduce the following statistical notation for the 
multivariate normal distribution. If a random vector, z, is normally distributed with mean 
vector ,u, and covariance matrix X, we write its probability density function as 

P(z) = N(z I , Y). 

For example, the posterior distribution for [ from the preliminary estimation in section 3 
may be written as 

P(P) - N([ I [3, ,). (10) 

The derivation of P(v(hYP)) requires three essential steps, which will be repeated for 
the derivations in Appendix C. In step 1, we identify the distribution of v(hyp) given y and 
[, which is given by equations (4) and (5): 

P(v(hyp)I-y [) = N(v(hYP)IX(hYP)3 + - + 8(hyp), (1 - X)o21). 

We cannot use this distribution directly because it conditions on two unknowns, -y and [3. 
(Recall that A and & are assumed known after estimation.) The remaining two steps in this 
derivation average over the distributions of these two parameters. 

In step 2, we average over the distribution of y, which is simply P(-y ,[) = N(y 10, 
X2I), from equation (4). 

P(v(hyp) l I -y' P(v~"y)l, [)P(y1) d-y 
(1 1) 

= N(v(hYP) IX(hYP)13 + 8(hyp), g2I) 

Finally, in step 3, we average over the uncertainty in P3 (equation 10), using the same 
rule from probability theory: 

P(v(hyp)) E (V(hYP)I [)P([3)d[ (12) 

= 7 N(v (hyp)|X(hyp)X + 8(hyp), (2 I) N([ 3i.) d[E 

= N(v(hYP)IX(hYP)13 + 8,X(hyp)XPX(hyp), + U21). (13) 

The last line here is the final unconditional distribution of v(hYP), which we use to calculate 
the hypothetical election results, as in Table 1, and then the distributions of various summa- 
ries of the electoral system. 

APPENDIX C 
Deriving the Distribution under Actual or Counterfactual Electoral Conditions 

We now derive the distribution of P(v(hYP) v) in a manner directly analogous to that 
in Appendix B. In step 1, we identify the distribution of v(hyP) given y and [3 and, unlike 
prediction, observed votes v. Actually, once -y and [3 are known, v gives no additional 

including v(hYP), and so on, are treated as random variables, and they have ajoint probabil- 
ity distribution; (2) if we have two variables (or sets of variables), A and B, and we have 
observed B, then we are interested in the conditional distribution of A, given B: P(A IB) = 
P(A, B)IP(B); (3) if two variables (or sets of variables), A and B, are both unknown, then 
the distribution of A alone is P(A) = f P(A, B) dB = f P(A IB)P(B) dB. 
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information about v(hYP) because ? and r(hyP) are independent, and so the distribution of v(hyp) 
is still given by equation (5): 

P(V(hyp) Iy, 3, v) = N(V(hYP)IX(hYP)13 + y + 8(hyp), (1 - X)aI). (14) 

Step 2 requires averaging over ry, but in this case the distribution can be improved by 
conditioning on v-the key difference between this derivation and that for prediction in 
Appendix B. We condition on v with Bayes's theorem: 

P(vly, 1)P(-y1) 
P(y1I3, v) = P(v I a) 

x N(vIX(hYP) + y, (I - X)21)N(yIO, XU21) (15) 

= N(y X(v -X(hYP) 1), X(l -_ )2I). 

To complete step 2, we use this result to integrate out y: 

P(v(hyp)r V) = r P(V(hyp)I!y 3, v) P(-y, v)dy 
(16) 

= N(v(hyp)I\v + (X(hYP) - XX) 3 + 5(hyp) (1- 2) f21) 

Finally, we integrate out P3 for step 3: 

P(V(hyp) I V) = P(V(hyp) I a, v)P(lv)dlp 

= N(v(hYP) | Xv + (X(hYP) -X) 3 + 5(hyp) 

(1 _ \2)(c2I + (X(hYP) -X)X.(X(hYP) - XX)'). 
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One of the more curious features of American democracy is that electoral boundaries are 
drawn by political parties. In order to ensure a notion of equal representation, the Constitution of 
the United States provides that “Representatives and direct Taxes shall be apportioned among the 
several States which may be included within this Union, according to their respective Numbers.”� 
Since populations change over time, the Constitution also provides a time frame according to 
which representation shall be adjusted—“… within every subsequent Term of ten Years, in such 
Manner as they shall by Law direct”—where “they” represents the states. In practice, this leaves 
the process of redistricting to state legislatures and governors.

History has shown that political parties act in their own interests; redistricting is no exception, 
and the advantages gained can be large. From Massachusetts’s Elbridge Gerry in 1812 (after 
whom the term “Gerrymander” was coined) to the recent actions of Texas Representative Tom 
DeLay, American politicians have used the redistricting process to achieve partisan political 
ends. Most recently, the much publicized Republican redistricting in Texas in 2003 caused four 
Democratic congressmen to lose their seats and would have been even more extreme but for 
the Voting Rights Act, which effectively protected nine Democratic incumbents. Other particu-
larly stark current examples include Florida, Michigan, and Pennsylvania—states that are evenly 
divided, but whose delegations to the 109th Congress collectively comprised 39 Republicans 
and 20 Democrats. Democrats are also familiar with the practice; although President George W. 
Bush won Arkansas by more than 10 points in 2004, the state’s delegation to the 109th Congress, 

� Article I, section 2, clause 3.
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bolstered by the Democratic state legislature’s redistricting in 2001, contained three Democrats 
and one Republican.

Although gerrymandering using unequal district sizes is unlawful, partisan gerrymandering 
remains legal, though controversial. In Davis v. Bandemer (1986), the Supreme Court declared 
partisan gerrymandering inimical to norms of fair and equal representation; but the majority 
was unable enunciate a workable test for where redistricting stops and gerrymandering begins. 
Nearly two decades later, despite numerous attempts to find such a standard, four members of 
the court (Chief Justice Rehnquist and Justices O’Connor, Scalia, and Thomas) found in Vieth v.  
Jubelirer (2004) (a 4-1-4 decision) that the test laid down in Bandemer was not practicable, in 
that it gave no guidance to legislatures and lower courts, and, absent such a test, partisan redis-
tricting was not justiciable.�

In the wake of this decision and the controversial Texas redistricting in 2003, there has been 
renewed interest in legislative reform to change the partisan nature of redistricting. Currently, 
two states, Iowa (since 1980) and Arizona (since 2000), include nonpartisan commissions in their 
decennial redistricting processes, but only Arizona completely excludes political bodies. More 
than 20 states have considered similar amendments in the past decade, though, and movements 
advocating such changes seem to be gaining momentum.

Recently, three states, California, Florida, and Ohio, held referenda that proposed that panels 
of retired judges take charge of the redistricting process. None of these passed. But despite the 
great impact of gerrymandering on the American political system and the surge of recent interest 
in reform, few authors have attempted to understand the basic incentives at work.

In this paper, we view the issue of redistricting through the lens of an economist concerned with 
the endogenous formation of political institutions. In particular, we frame the issue as a maximi-
zation problem by the gerrymanderer where the choice variables are the allocations of voters to 
districts. In contrast, most previous analyses model the problem as a trade-off between “biased-
ness”—the degree to which an evenly divided population would elect an uneven slate of legisla-
tors—and “responsiveness”—the sensitivity of the share of seats held by a party to the share of 
voters supportive of that party (Guillermo Owen and Bernard Grofman 1988; Katerina Sherstyuk 
1998; Gary W. Cox and Jonathan N. Katz 2002). In these models, the gerrymanderer optimally 
concentrates those least likely to vote for her in districts that are “thrown away” or “packed,” and 
spreads remaining voters evenly over the other districts, which are “smoothed” or “cracked.” A 
major limitation of these models is that they are not micro-founded; the gerrymanderer chooses 
properties of the redistricting plan, as a whole, rather than the placement of voters into districts. 
Since there is no one-to-one mapping from these aggregate characteristics to individual district 
profiles, there is no guarantee that the solution from these models is actually optimal.

Thomas W. Gilligan and John G. Matsusaka (1999) take an alternative approach, instead ana-
lyzing a micro-founded model in which individuals with known party affiliations vote for those 
parties with probability one. Since one party wins a district comprising n 1 1 of its supporters 
and n opponents with certainty, the optimal strategy is to make as many districts like this as 
possible. Indeed, if one party holds a bare majority of the population, then they win all districts! 
Though the assumptions of observability and deterministic voting simplify the analysis greatly, 
they clearly do so at some cost.

Kenneth W. Shotts (2002) considers the impact of majority-minority districting. He develops 
a model with a continuum of voters whose identities are perfectly known to the gerrymanderer, 
and imposes a constraint he calls the “minimum density constraint.” This requires the gerryman-
derer to put a positive measure of all voter types in each district. This is a reduced form way of 

� “… the legacy of the plurality’s test is one long record of puzzlement and consternation,” Scalia J.
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modelling the constraint that districts be contiguous and the fact that in practice the gerryman-
derer receives a noisy signal of voter preferences.

We analyze a model in which there is a continuum of voter preferences, and where the ger-
rymanderer observes a noisy signal of these preferences. We show that the optimal strategy 
always involves concentrating one’s most ardent supporters together. Intuitively, since district 
composition determines the median voter, smoothing districts makes inefficient use of extreme 
Republicans as right-of-the-median voters in many districts, rather than having them be the 
median in some districts. This contrasts with the “cracking” intuition, which calls for the cre-
ation of identical profiles among districts the gerrymanderer expects to win. When the signal a 
gerrymanderer receives is sufficiently precise, we obtain a sharper characterization. The optimal 
strategy creates districts by matching increasingly extreme blocks of voters from opposite tails 
of the signal distribution. Intuitively, extreme Democrats can be best neutralized by matching 
them with a slightly larger mass of extreme Republicans.

This analysis is a first step toward a more complete understanding of the phenomenon of ger-
rymandering. There are important issues this paper does not address. Most notably, we abstract 
from geographical considerations, such as the legal requirement of contiguity (see Section I 
below, however), as well a preference for compactness or the recognition of communities of inter-
est. Second, we focus exclusively on partisan incentives, to the exclusion of the motivations of 
incumbents (i.e., incumbent gerrymandering). Finally, we do not model the constraints imposed 
by the Voting Rights Act. Of course, this does not mean that racial and partisan gerrymandering 
are distinct phenomena. Given that race is a component of the signal of voter preference observed 
by the gerrymanderer, there may be circumstances where they are essentially the same practice. 
Ultimately this is an empirical question, which depends on the joint distribution of voter prefer-
ences and voter characteristics. (These issues are further explored in Section VI).

The remainder of the paper is organized as follows, Section I details the legal and institutional 
backdrop against which redistricting takes place. In Section II we present some basic examples 
to illustrate the primary intuitions of the solution to our more general model, which we present in 
Section III along with comparative statics. Section IV reports the result of a number of numeri-
cal examples of the model in order to illustrate further the optimal strategy and its comparative 
statics. In Section V we explore a number of extensions to the basic model, including alterna-
tive partisan objective functions, the effects of gerrymandering on policy outcomes, candidate 
specific advantages, and uncertain voter turnout. Finally, Section VI contains some concluding 
remarks and suggests directions for future work.

I.  Institutional Background�

The process of redistricting was politicized in America as early as 1740 (in favor of the Quaker 
minority in the colony of Pennsylvania). Until the landmark Supreme Court decision Baker v. 
Carr in 1962, the major legal constraint on gerrymandering was that districts be contiguous. 
Many states, particularly in the South, had not redrawn Congressional districts after each decen-
nial Census. Since population growth was much greater in urban areas, this inertia served to 
dilute the urban vote—often poor and black—and enhance the political power of rural white 
voters who traditionally supported the Democratic Party. After the 1960 Census, the popula-
tion disparities between congressional districts had become as great as 3 to 1 in Georgia (and as 
extreme as 1,000 to 1 for state legislature seats in some states). The decision in Baker declared 
that challenges to such districting plans were justiciable, and two years later the Court clarified its 

� This section details the legal and political backdrop against which gerrymandering occurs today. Readers uninter-
ested in, or already familiar with, this material may wish to skip directly to the analysis in Section II.
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position on the standard for unlawful redistricting plans, stating in Wesberry v. Sanders that only 
congressional districts with populations “as nearly equal as possible” were acceptable under the 
Equal Protection clause.� Furthermore, federal district courts were empowered, as part of their 
remedial discretion, to draw district boundaries themselves should a state prove either unable or 
unwilling to produce a satisfactory plan.

Consensus over the practical implications of the Court’s decisions solidified over the next 15 
years. Though federal district courts initially experimented with strict upper bounds on the max-
imum population deviation across districts, by the late 1970s states were subject to a more flex-
ible set of criteria, in which concerns such as the compactness of districts or the preservation of 
“communities of interest” justified small deviations in representation. As of 1980, though, conti-
guity and population equality across districts were the principle constraints on redistricting.

In the 1990s, debates around gerrymandering shifted to the issue of “race conscious” redis-
tricting. While it had long been clear that intentional dilution of the voting strength of racial 
minorities violated the Equal Protection clause, it was less clear that states could draw boundar-
ies such that racial minorities could elect their preferred candidates (Samuel Issacharoff, Pamela 
S. Karlan, and Richard H. Pildes 2002). In a number of cases, culminating in Shaw v. Reno 
(1993), the Court found that redistricting plans would be held to the same strict scrutiny with 
respect to race as other state actions. In practice, this means that, once plaintiffs demonstrate 
that racial concerns were a “predominant factor” in the design of a districting plan, the plan is 
illegal unless the state can justify the use of race and show that such factors were considered 
only when necessary. This places a heavy burden on the states. Some federal courts initially 
interpreted these decisions as requiring states to ensure minority representation through the 
creation of majority-minority districts, but the Supreme Court declared that this practice would 
violate Section 2 of the Voting Rights Act. In more recent cases, the Court has continued to 
downplay the importance of racial considerations; for instance, litigation surrounding the 1991 
North Carolina redistricting ended when the Court ruled, in Easley v. Cromartie (2001), that 
partisan concerns, not racial concerns, “predominated” in the construction of the heavily black 
and Democratic 12th district, and thus the plan was legal.

The history of attempts to ban partisan gerrymandering have proven less successful still. In 
Davis v. Bandemer, the Supreme Court attempted to limit the impact of partisan concerns in 
redistricting processes by stating that such claims were, in theory, justiciable (though they did 
not decide the merits). Though the years following this decision saw many attempts to define 
the level and shape of such a standard, there was little agreement, and no claim of partisan ger-
rymandering ever succeeded. In Vieth v. Jubelirer, four members of the Court found that such 
attempts were doomed. While Bandemer is still good law, the future justiciability of partisan 
gerrymandering claims seems far from assured.

The current reality of political redistricting reflects the past 40 years of case history. States 
now use increasingly powerful computers to aid in the creation of districts, and, accordingly, 
Baker’s “as nearly equal as possible” population requirement is extremely strict. A Pennsylvania 
redistricting plan was struck down in 2002 for having one district with 19 more people than 
another without justification! On the other hand, the law does allow for some slight deviations, 
provided there is adequate justification. In Iowa, for instance, congressional districts must com-
prise whole counties; the current maximum population deviation of the Iowa redistricting plan 
is 131 people, but the legislature rejected an earlier plan with a 483-person deviation. Such cases 
are not common, though. The current Texas districting plan is more representative and has, 

� See Wesberry v. Sanders 376 US 1 (1964). The court applied a similar standard to districts for statewide legislative 
bodies in Reynolds v. Sims 377 US 533 (1964), and for general purpose local governments in Avery v. Midland County 
390 US 474 (1968).
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to integer rounding, equal population in each 
district.

As previously mentioned, districts must be 
contiguous. This requirement first appears in 
the Apportionment Act of 1842, though it was 
standard long before then. While technology 
has tightened the population equality con-
straint, computers have effectively loosened the 
contiguity requirement, as legislators can now 
draw districts more finely than ever before. In 
the 1970s, districting plans were laborious to 
create and difficult to change, as each required 
hours of drawing on large floor-maps using 
dry-erase markers; now lawmakers use Census 
TIGERLine files to create and analyze many 
alternative districting schemes both quickly 
and accurately. Contiguity has been stretched 
to the limit in such recent cases. Florida’s 19th, 
22nd, and 23rd districts, shown in Figure 1, are 
one such case. The 22nd comprises a coastal 
strip not more than several hundred meters 
wide in some places but 90 miles long, while 
tentacles from the 19th and 23rd intertwine to 
divide the voters of West Palm Beach and Fort 
Lauderdale. Even more striking is the shape of 
the Illinois 4th (shown in Figure 2), drawn to 
include large Hispanic neighborhoods in the 
North and South of Chicago but not much in 
between. Each of these districts is, in some 
places, no more than one city block wide, and 
such necks are often narrower than 50 meters.

State law governs procedures for redrawing 
district boundaries. In most states, redistricting 
plans are standard laws, proposed by the mem-
bers of the legislature and subject to approval 
by the legislatures and the governor. Arizona 
and Iowa delegate redistricting to independent 
commissions, though in Iowa legislators must 
still approve the plan and may edit proposed 
schemes after several have been rejected. In 2001, for instance, the legislature rejected the first 
proposed plan along partisan lines.� Arizona and Iowa also instruct their redistricting commis-
sions to make districts “compact,” respect the boundaries of existing “communities of interest,” 
and use geographic features and existing political boundaries to delineate districts “to the extent 
practicable.” Finally, Arizona mandates that “competitive districts should be favored where to 
do so would create no significant detriment” to other objectives.� No other states have explicitly 
defined redistricting goals along these lines.

� “Senate Rejects Districts,” Des Moines Telegraph Herald, May 3, 2001.
� See Arizona Proposition 106, and 1981 Iowa Acts, 2nd Extraordinary Session, Ch. 1.

Figure 1.  
Florida 16th to 23rd Congressional Districts
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There are three key messages to understand from the backdrop against which gerrymander-
ing takes place. First, contiguity may well not be a binding constraint because of the fine lines 
gerrymanderers use to create districts. Second, other spatial/geographic concerns such as com-
pactness and communities of interest have found little legal traction. As such, they are really 
not constraints on gerrymanderers. Third, the Supreme Court has consistently considered par-
tisan and racial gerrymandering to be analytically distinct—Cromartie even going so far as to 
allow racial gerrymandering if it is not deemed the predominant motive. The first two of these 
points suggest that spatial/geographic considerations are not first-order concerns. Accordingly, 
our model omits them. The third rests on the premise that signals of voting propensity and race 
are sufficiently uncorrelated that an optimal gerrymandering strategy does not conflate the two 
issues. This is a point to which we return later in the paper.

II.  Some Simple Examples

In order to illustrate the intuition behind the theory in this paper, we now provide some very 
simple examples that capture the basic features of the more general model in Section III. In these 
examples, for simplicity, voters have single-peaked preferences. In the general model, voter pref-
erences satisfy single-crossing—an arguably less restrictive condition. For instance, when voters 
have a convex loss function over the distance of their bliss point from the actual policy, then 
single-peakedness implies that single-crossing is satisfied.

A. Example 1

Consider the problem faced by a gerrymanderer in a state in which a population of voters 
has single-peaked preferences that are symmetric about a policy b, within a one-dimensional 
policy space. We assume that each voter has bliss point b, and that, across the population, b is 

nationalatlas.govTM

Congressional District

County

Illinois
(19 Districts)

Figure 2. Illinois 4th Congressional District
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distributed uniformly on 321, 14 . These assumptions imply that, in a two-party election, each 
voter supports the candidate located closest to her on the ideological spectrum. To begin, we 
assume that the gerrymanderer can directly observe b for each voter. We assume that all can-
didates—the right-wing “Republican” candidates and the left-wing “Democrats”—locate sym-
metrically about zero, and so the percent of votes captured by the Republican candidate in any 
election is simply the proportion of voters to the right of zero.

The gerrymanderer—suppose she is a Republican—must break up the population into equal-
sized districts in which different elections take place with the goal of maximizing the expected num-
ber of seats won by her party. Since we abstract from geographic concerns here, the gerrymanderer 
can match any pieces of the population into a district. Suppose, for simplicity, that the gerryman-
derer must form two districts, so that each district must comprise a one-half mass of voters. Since 
all voters for whom b $ 0 support the Republican candidate with certainty, Republicans win all 
districts containing one-quater or more mass of such voters.� From Gilligan and Matsusaka (1999), 
the optimal gerrymander makes exactly half of the voters in each district have preferences b $ 0;  
in this basic setup, Republicans win each district with certainty. It does not matter which right-
wing voters go into each district.

B. Example 2

We now add some noise to the preferences in Example 1. Suppose that, after candidates are 
positioned, an aggregate preference shock A affects the population so that preferences are now 
single-peaked about b̂ 5 b 2 A. The gerrymanderer observes only b and not A or b̂. Suppose 
that A is distributed uniformly on 321, 14 . While voters for whom b . 0 now vote for the right-
wing candidate in expectation, only those for whom b 5 1 support the Republican candidate 
with certainty; a voter with b 5 0.5, for instance, prefers the right-wing candidate only if A , 
0.5, which happens 75 percent of the time.

In this example we can make a sharper prediction about the form of the optimal gerrymander. 
Half of the voters in each district should have b . 0, but it now matters which of these voters go 
into which district. The optimal gerrymander groups all extreme voters for whom b [ 30.5, 14 
into one district (denoted as District 1) and more moderate right wingers with b [ 30, 0.54 into 
District 2. These blocks of right-wing voters are then grouped with any mass of voters for whom 
b , 0; since the preference of the median voter in each district ( m1 5 0.5 in District 1 and m2 5 
0 in District 2) is already determined, the composition of the left-wing voters does not matter. 
Republican candidates now win District 1 with probability 0.75 and District 2 with probability 
0.5. Any other distribution of right-wing voters between the two districts (with one-quarter mass 
to each) would dilute the power of the extreme right-wing voters by wasting some in District 
2, since that median voter would still have b 5 0 while the preferences of the median voter of 
District 1 would fall. Only by concentrating the most extreme right-wing voters together can the 
gerrymanderer make the most effective use of her supporters.

C. Example 3

Finally, suppose (in addition to the setup in the second example) that individual preferences 
are measured with noise by the political parties. That is, let the gerrymanderer observe only s, 
a signal of preferences, instead of b itself. Across the population, let s be distributed uniformly 
on 321, 14 , and let b Z s be distributed uniformly on 3s 2 0.5, s 1 0.54 , with an independent draw 

� For the sake of simplicity, we resolve all “ties” in this example in favor of the Republican candidate. Voters with 
b 5 0 support the right-wing candidate, and if the candidates have equal vote shares, the Republican wins.
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of b for each voter with a given signal s. Suppose the gerrymanderer creates districts as above 
(grouping voters for whom s [ 30.5, 14 into District 1 and s [ 30, 0.54 into District 2), and, fur-
thermore, groups the most extreme left-wing voters into District 1 and the others in District 2. 
Because the measurement of preferences is noisy, the median voter in District 1 falls to m1 5 0; 
the Republicans gain no advantage over proportional representation. Intuitively, the Republicans 
are “cutting it too close” in District 1. Although District 1 contains the most extreme right-wing 
voters, there are only one-quarter mass of them, and so the most left-wing voter with a right-wing 
signal is the median voter. Since some of those right-wing voters end up with more moderate 
preferences than their signal suggested, the median voter in the district is a moderate.

Instead, consider a gerrymander who groups all voters with s [ 3 p, 14 into District 1 and s [ 
30, p 4 into District 2. Because of the intuition developed in the second example, this districting 
scheme still keeps the most extreme right-wing voters together. Now, though, the Republicans 
have more than just a bare majority of supporters in District 1, reducing the problem caused by 
preference mismeasurement above.

To complete this optimal districting, the gerrymanderer must allocate the left-wing voters. Her 
problem here is exactly opposite that faced with the right-wing voters: she must decide how best 
to neutralize the voting power of the extreme left-wingers. The key to this problem is that, since 
the majority of District 2 voters are left-wingers (assuming p , 1/2), m2 is far more sensitive to 
the allocation of these voters than m1. Thus, the optimal gerrymanderer should concentrate those 
least likely to vote for the Republican candidate into District 1, where they affect the median 
voter least.

Combining these insights, consider a districting plan such that voters for whom s [ 321, 21 1 
p 4 < 3 p, 14 make up District 1 and the rest are placed in District 2. The particular distributional 
assumptions made above imply that

	 m1 5 p 1 "1 2 2p 2
1
2

 and m2 5 p 2 
1
2

 .

The optimal gerrymander sets p* 5 3/8; Republican candidates win 11/8 seats in expectation. By 
including more right-wingers in District 1, m1 becomes less sensitive to the mismeasurement of 
preferences, and thus increases quite a bit, while m2, which depended less on the precision of the 
signal, does not decrease by as much. Furthermore, the right-wing voters of District 1 determine 
that m1 5 !1/4 2 1/8 5 3/8, and so the inclusion of the most extreme left-wingers has no effect. 
If, for instance, the gerrymanderer had included these least favorable voters into District 2 and 
placed voters with s [ 321 1 p, 21 1 2p 4 into District 1, m2 would fall while m1 would not 
change.

These three simple examples illustrate how key features of an optimal partisan gerryman-
der differ from the standard “throwing away” and “smoothing” intuitions. First, it is not best 
to “smooth” extreme and moderate right-wing voters across many districts; rather, one should 
concentrate the most extreme right-wingers into a single district in order to not waste them all 
as right-of-median voters. Second, it is not efficient to “pack” those least likely to vote for one’s 
candidate into a district that is “thrown away”; instead, these extreme left-winger voters are best 
countered by matching them with a greater number of extreme right-wingers.

We now turn to our model, which provides a more general characterization of the optimal 
partisan gerrymander, but the intuitions brought out in our examples are still prominent. Indeed, 
under certain regularity conditions, the optimal districting scheme has exactly the same form as 
in the final example above, matching increasingly extreme slices of voters from opposite sides of 
the signal distribution for the population.
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III.  The Model

A. Overview

There are two parties, D and R, which can be interpreted as the Democratic Party and the 
Republican Party. One of these parties (without loss of generality, we assume it to be R) is 
the gerrymanderer and creates districts. There is a unit mass of voters with preferences over a 
one-dimensional policy space. The gerrymanderer does not observe a voter’s preferences, but, 
instead, receives a noisy signal of them. Also, she observes the posterior distribution of policy 
preferences conditional on the signal. We will sometimes refer to the marginal distribution of the 
signal as the “signal distribution.” Thus, her problem is to create N voting districts by allocating 
voters from the signal distribution. Her objective is to maximize the expected number of districts 
won. The probability that each party wins a district is determined by the median voter in that 
district. The only constraints we place on the gerrymanderer are that: (a) each voter must be allo-
cated to one and only one district; and (b) all districts must contain an identical mass of voters.

B. Statement of the Problem

There is a unit mass of voters who differ in their political preference over two candidates who 
locate on the real line such that D , R. We assume that this location happens prior to observing 
any signals about voters preferences. Denote the payoff to voter i of candidate x being elected 
as ui 1x 2 .

Definition 1: Voter preferences satisfy Single-Crossing if, for any two voters i and j such that 
i , j and any two candidate locations D , R, the following hold: (i) uj 1D2 . uj 1R2 1 ui 1D2 . 
ui 1R2 and (ii) ui 1R2 . ui 1D2 1 uj 1R2 . uj 1D2.

We assume voters have preferences satisfying single-crossing. Let bi 5 ui 1R2 2 ui 1D2 , for 
each voter type i [ R. Without loss of generality, we reorder the voters so that b is monotonic. 
From this point on, the indexing of voters will reflect this reordering.�

These preferences are not observed by the gerrymanderer, who instead receives a noisy sig-
nal, s [ R. Let the joint distribution of b and s be given by F 1b, s 2 , which is assumed to have 
full support on R2. Let player R be the gerrymanderer. Let R have a Bayesian posterior G 1b Z s 2 
for the distribution of preferences given an observed signal. We refer to this distribution as the 
“conditional preference” distribution. We assume that both F and G are absolutely continuous. 
Define the marginal distribution of s as

	 h 1s 2 5 3f 1b, s 2 db.

Since there is a continuum of voters, we can interpret h not only as characterizing a single 
draw from the population of voters, but also the mass of voters in the population. We refer to 
h as the “signal distribution.” R allocates mass from this distribution in order to form districts. 
Normalize the median of s in the population to zero.

Since preferences satisfy single-crossing, the median voter determines a Condorcet winner 
(Paul Rothstein 1991). As a reduced form representation of electoral uncertainty, we assume 
that, in each election, after R observes the signal s, there is an aggregate shock decreasing all 

� In the Appendix, we offer a result, which is of independent interest, that under single-crossing preferences the 
probability that a voter votes Republican is increasing in her type.
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preferences by A. Thus, if the median voter in district n has preferences such that b 5 mn, she 
votes for the Republican candidate if and only if A # mn, which occurs with probability B 1mn 2 , 
where B 1 · 2 denotes the c.d.f of A. We assume that A can take any value in R with positive prob-
ability, so that B is strictly increasing.� One can also think of A as an “electoral breakpoint” 
such that voters positioned above (to the right) of the realization of the breakpoint vote for the 
Republican candidate, while those on the left vote democratic. Importantly, once the breakpoint 
is determined, all uncertainty is resolved and the position of voters relative to A determines for 
whom they vote with certainty. The uncertainty about whom a particular voter will vote for 
comes from the fact that A is stochastic.

Our assumptions about the location of candidates imply: (a) that all candidates of a given party 
and state locate in the same place; and (b) that this location takes place before receiving signals 
of voter preferences. In essence, these assumptions imply that there is nothing “local” about an 
election. Though perhaps counterintuitive, research suggests that this may not be far from the 
truth. Stephen Ansolabehere, James M. Snyder, and Charles Stewart III (2001) argue that, while 
district-to-district competition may exert some influence on the candidate platforms, the effect 
is “minor compared to the weight of the national parties.” Allowing for state-to-state differ-
ences would surely leave even less variation in local platforms. Similarly, David S. Lee, Enrico 
Moretti, and Matthew J. Butler (2004) demonstrate that exogenous shifts in electoral preferences 
do not affect the menu of candidates offered to voters, perhaps because politicians have no way 
to credibly commit to campaign promises. We discuss the effects of certain departures from this 
assumption in Section V.

R divides the population into N equal-sized districts to maximize the expected number of seats 
won in the election. Let cn 1s 2 denote the mass of voters from the population placed in district n. 
Formally, R solves the program

(1) 	  max
5cn1s26n51

  
e1

N
 a

N

n51
B 1mn 2 f

	 s.t. 3
`

2`

cn 1s 2 ds 5 
1
N

 , 5n    a
N

n51
cn 1s 2 5 h 1s 2 , 5s    0 # cn 1s 2 # h 1s 2 , 5n, s,

where

(2) 	  mn 5 b̂    s.t. 3
`

2`

G 1b̂ Z s 2cn 1s 2 ds K Gn 1b̂ 2 5 
1

2N
 .

It will be useful to define the following for notational purposes:

(3) 	  gn 1b 2 5 
'Gn 1b 2
'b

 .

Given a district profile cn 1s 2 , equation (2) determines mn with certainty. Though R could not 
identify any single voter as the median voter in a district, there is nothing stochastic about the 
preference parameter of the median voter.10

� This implies that the shock is independent of voter type. It may be the case that more “extreme” types are less 
affected by such shocks. This could be explored in future work.

10 This model structure is isomorphic to the inclusion of further levels of uncertainty between signals and prefer-
ences. For instance, suppose that the gerrymanderer believed that, with 50 percent probability, preferences had a con-
ditional distribution G11b Z s 2 , and otherwise they were conditionally distributed as G2(b Z s 2 . Equation (2) would then 

NN
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C. Characterization of the Optimum

No Cracking.—In order to analyze the problem, it is necessary to place some structure on 
the conditional distribution of preferences. The first restriction we require is that the signal be 
informative in the following sense.

Condition 1 (Informative Signal Property) : Let 0G 1b Z s 2/0s 5 z 1b Z s 2 . Then,

	
z 1b 0s r 2
z 1b 0s 2  , 

z 1b r 0s r 2
z 1b r 0s 2 , 5s9 . s, b9 . b.

This property is similar to the Monotone Likelihood Ratio Property (MLRP) due to Samuel 
Karlin and Herman Rubin (1956) (see also Paul R. Milgrom 1981). In fact, if a higher signal 
simply shifts the mean of the conditional preference distribution, then this property is equivalent 
to MLRP.11 When this is the case, the condition essentially states that higher and higher signals 
(more right-wing) are more and more likely to come from voters who have underlying prefer-
ences that are farther to the right. Many common distributions satisfy it, including: the normal, 
exponential, uniform, chi-square, Poisson, binomial, noncentral t, and noncentral F. If a higher 
signal also changes the shape of the conditional distribution, then this property, like MLRP, 
becomes less intuitive. Condition 1 does, in general, imply first-order stochastic dominance,12 
and as such rules out cases where observing a higher signal makes both the probability of the 
voter being extreme left-wing and the probability of being extreme right-wing increase.

The second condition we require is a form of unimodality.

Condition 2 (Central Unimodality): g 1b Z s 2 is a unimodal distribution where the mode lies 
at the median.

Also note that, without loss of generality, we can “rescale” s such that s 5 maxb  g 1b Z s 2 . 
Though many distributions that satisfy Condition 1 are unimodal, some are not, and we rule 
these out. Furthermore, Condition 1 implies that the mode of g 1b Z s 2 must lie below the mode of 
g 1b Z s92 if s , s9. We can thus “relabel” the signals such that the mode of g 1b Z s 2 lies at s. The two 
properties in Condition 2, taken together, intuitively imply that, conditional on signal s, prefer-
ences are distributed “near” s and not elsewhere.

Step 1: Slicing

Lemma 1: Suppose Condition 1 holds, and consider two districts, i and j, such that mi , mj. 
Consider any two voter types, s19, s29 [ ci (i.e., in district i ). Then, any districting plan such that 
s [ cj for any s [ 3s19, s294 cannot be optimal, except perhaps on a set of measure zero.

become e
`
2` 1/2 3G11mn Z s 2 1 G2 1mn Z s 2 4cn 1s 2 ds 5 1/2N, which is isomorphic to our original problem, if instead G 1b Z s 2 

5 1/2 3G11mn Z s 2 1 G2 1mn Z s 2 4 .
11 To see this, note that, if changing s shifts only the mean of the conditional preference distribution, then G 1b Z s 2 5 

G 1b Z 1s9 2 s 2 2 . Therefore, z 1b Z s 2 5 2g 1b Z s 2 , and hence Condition 1, imply MLRP.
12 MLRP always implies this as well.
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Lemma 1 shows that we can restrict attention, without loss of generality, to a much smaller 
strategy space. Districts are constructed from vertical slices of h—either whole slices (as in 
districts 1, 2, and 3 in the figure below), or a slice shared between districts that have the same 
median (“parfaits”) (as in districts 4 and 5). Furthermore, in the optimal gerrymander, the voters 
in higher-median districts must lie outside—that is, have more extreme preferences—those in 
lower-median districts. The intuitions here are very similar to those discussed in the examples 
above. Extreme right-wing voters should be concentrated to maximize their voting strength—
that is, the optimal districting scheme places an unbroken mass of voters with higher signals into 
the higher-median district rather than alternate smaller slices into all districts.

Step 2: No Parfaits

Lemma 2: Suppose that Conditions 1 and 2 
hold. If j Z i, then mj Z mi.

This penultimate step rules out parfaits, as 
defined above. Parfaits appeared stable above 
because the split equated both the medians and 
the sensitivity of the median to changes across 
the two districts. But this is not so. One can 
reallocate mass between two such districts to 
maintain the equality of medians and make 
one district more sensitive to change than the 
other. Then, a profitable deviation exists which 
lowers the less sensitive median by some but increases the other by more. Hence, parfaits cannot 
be optimal.

Once again, the driving intuition in this case in that of concentrating extreme voters together 
to maximize their electoral power. In a way, parfaits are the least efficient use of extreme voters, 
and so it cannot be surprising that they are not optimal. Thus, the optimal gerrymander must 
contain only vertical slices of the signal distribution h that do not violate the ordering restriction 
from Lemma 1.

Step 3: No Intermediate Slices

Lemma 3: Suppose Condition 1 holds and 
consider three districts j, i, and k such that mj 
. mi . mk. Now, fix h 1s 2 and N. Then, for a 
sufficiently precise signal, there does not exist 
a voter type s* [ cj such that s9 . s* . s0 
where s9 [ ci and s0 [ ck, except perhaps on 
a set of measure zero.

This final step expands Lemma 2 by show-
ing that voters in a higher-median district 
cannot lie within the set of all voters in lower-
median districts. That is, by ruling out cases 
like that in Figure 4, it shows that optimal dis-
tricts must comprise either a single slice or two slices matching mass from opposite tails of the 
distribution. The intuition is very similar to that of Lemma 2, that lower medians (such as those 

Figure 4.  
An Example of a Strategy Ruled Out by Lemma 3

Figure 3. Slices and Parfaits
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in Districts 2 and 3 in Figure 4) are more positively affected by the inclusion of moderate instead 
of extreme left-wing voters. On the other hand, the higher medians (such as that of District 1) are 
hardly lowered by the substitution of extreme left-wingers. In order for these arguments to hold, 
though, the signal distribution must have high enough quality. If it does not, then intermediate 
slices are possible.

Proposition 1: Suppose that Conditions 1 and 2 hold, and that the signal distribution is of 
sufficiently high quality (as defined in Lemma 3). Consider a districting plan with N districts 
labelled such that mj . mi if and only if j , i. This plan is optimal if and only if it can be char-
acterized by “breakpoints” 5un6 n

N
5
2

1
1 and 5 ln6 n

N
5
2

1
1 (ordered such that u1 . u2 . … . uN21 . lN21 

$ lN22 $ … l1 $ 2`) such that

	 h 1s 2  if s , l1 or s . u1
	 c1 5 •	 ,
	 0      otherwise

	 h 1s 2  if ln21 , s , ln or un21 . s . un

	 cn 5 •	 for 1 , n , N,
	 0      otherwise

and

	 h 1s 2  if s . lN21 or s , uN21
	 cN 5 •	 .
	 0      otherwise

At this point, we have established that cracking is not optimal, although some form of packing 
may still be. That is, we have not yet ruled out the type of strategy depicted in Figure 5. We will 
now provide conditions under which packing is not optimal—and show that matching of extreme 
supporters with extreme opponents is.

No Packing.—We now offer a result which shows that if the signal quality is sufficiently high, 
the optimal strategy cannot involve packing, by which we mean concentrating one’s most ardent 
opponents into a single district—a notion we immediately make precise.

Proposition 2: Suppose Conditions 1 and 2 hold and the signal is of sufficiently high quality. 
Then, there exists n, and s , s9, such that mn . mN and s [ cn, s9 [ cN .

To understand the intuition for this result, first consider a potential deviation from a district-
ing plan that “packs,” as in Figure 5: R could 
take the most left-wing voters from District 3 
into District 1, and then “slide” Districts 2 and 
3 to the right, thereby gaining in Districts 2 
and 3 but losing ground in District 1. Now, 
consider how this strategy changes in value as 
we remove noise from the signal. As the sig-
nal becomes more precise, the cost of the pro-
posed change in District 1 decreases, since the 
voters R removes from District 1 are less likely 
to be actually right-of-median. (The voters R Figure 5. Proposition 2 Rules Out This Strategy
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adds can be so far to the left that they are always left-of-median.) But the gains in Districts 2 and 
3 stay roughly constant, since the entire districts are sliding to the right. At some point, when the 
signal is precise enough, the steady gains must begin to outweigh the shrinking loss. In the limit, 
as the signal becomes perfect, there is no cost to R in District 1 from this deviation, and R seeks 
to match an infinitesimally larger slice of right-wing voters with left-wing voters in each district, 
as in Example 2 in Section II.

Figure 6 is an example of a potentially optimal strategy. District 1 comprises a slice of extreme 
Republicans and a slice of extreme Democrats, and this slicing proceeds toward the center of the 
signal distribution. The slices from the right 
tail of the signal distribution contain more 
mass than the matched slice from the left tail, 
lest Republicans “cut it too close” in account-
ing for the noisy measurement of preferences. 
This follows the intuition developed in the 
third example in Section II.

We are unable to offer an analytical solu-
tion for the “breakpoints” 5ui6 n

N
5
2

1
1 and 5li6 n

N
5
2

1
1. 

However, they are easily computed numeri-
cally, given a signal distribution (as Section 
IV demonstrates). We also conjecture that as 
the spread of the noise distribution increases, 
the ratio of mass in upper slices to lower slices 
increases—limiting to the case where districts 
are comprised of whole slices, rather than 
matching ones. This is certainly the case in a wide variety of numerical examples we have 
explored, and we are yet to find a counterexample. It does, however, remain a conjecture.

D. Comparison with Received Literature

Previous work has considered two types of models which are both special cases of our model. 
The approach most similar to ours is that of Gilligan and Matsusaka (1999), in which voters 
always vote for a given party and their preferences are known with certainty to the gerryman-
derer. Our model simplifies to this case (as shown in the first example in Section II) if the 
conditional preference distribution limits to a point-mass at the true preference (so that prefer-
ences are observable) and if the breakpoint distribution B 1 · 2 is a point mass (so that voters are 
either Democrats or Republicans). As such, our model is more general and captures an important 
intuition—that more noise leads the gerrymanderer to create a larger buffer. Furthermore, our 
model has a continuum of preferences, and therefore is instructive not only as to the optimal 
number of Republicans and Democrats in a district, but also as to which types of Republicans 
and Democrats should be combined.

The second approach to modelling gerrymandering—one perhaps more popular than that of 
Gilligan and Matsusaka—is a binary signal model with noise. In such a model (e.g., Owen and 
Grofman 1988), the optimal strategy involves “packing” some districts and “cracking” others. 
Owen and Grofman refer to this as a “bipartisan gerrymander,” since there are Democratic 
districts (those thrown away) and Republican districts (the others). For instance, if 60 percent of 
the population have signal r and 40 percent signal d, then the optimal strategy involves creating 
a certain number of districts that contain only those with signal d, and spreading the r voters 
uniformly over the remaining districts. This result is also a special case of our model, with addi-
tional assumptions, as shown in Proposition 3.

Figure 6. An Example of the Optimal Strategy
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Proposition 3: Suppose s [ 5d, r6 and that Conditions 1 and 2 hold. Suppose further that 
B 1 · 2 is unimodal, with mode greater than d and less than r. Then, the optimal gerrymander 
involves creating some districts with all voters of type d, and others with a constant propor-
tion of r and d, and possibly one “odd district” with a nonzero but less-than-half proportion 
of r (from integer rounding problems). When N S ,̀ the optimal solution is a pure “bipartisan 
gerrymander.”

Thus, our model nests the solution of “bipartisan gerrymandering,” but the conclusions of 
such a model are very sensitive to several extreme assumptions. Furthermore, the intuitions this 
special case highlights are very misleading. For instance, suppose that there are three signals: 
r, d, and i (Independents). As Proposition 2 shows, the optimal strategy matches increasingly 
extreme segments from the right and left tails (in this case Republicans and Democrats) into the 
same districts. The district where Republicans have the lowest chance of winning is not one that 
contains many Democrats, but rather one that contains many Independents. That is, these least 
Republican districts contain voters from the middle of the signal distribution, not the extreme 
left tail. It is also clear that “smoothing” is not a robust intuition. It is true only in the special case 
of a binary signal, because there is no heterogeneity among potential Republican voters.

E. Comparative Statics

In this subsection, we consider how the value of being the gerrymanderer responds to changes 
in the underlying distribution of voter preferences and signals. We also consider how this value 
changes as the number of districts to be created changes.

Our first comparative static shows that more precise signals are always better for the 
gerrymanderer.

Definition 2: Consider two conditional preference distributions g and g9. The distribution 
g provides a More Precise signal than g9 if there exists a conditional distribution c 1s9 Z s 2 such 
that

	 3g 1b Z s92 c 1s9 Z s 2 ds9 5 g 1b Z s 2 .

Proposition 4: The expected number of districts won by the gerrymanderer is increasing in 
the precision of the signal.

This result shows that the gerrymanderer wins more districts in expectation as the signal 
received becomes more precise. Intuitively, as the gerrymanderer receives a better signal, the 
need for a large “buffer” of voters in a district declines. Instead, she can construct districts of a 
given median with a smaller proportion of voters from the right hand tail, leaving more right-
wingers for other districts. Mathematically, the gerrymanderer could always lower the quality 
of the signal, while the reverse operation is not possible. Thus, it cannot be that a lower quality 
signal is better.

Our second comparative static result shows that the gerrymanderer does better as the distribu-
tion of voters becomes more spread out.

Proposition 5: Consider two joint distributions F 1b, s 2 and F̂ 1b, s 2 , with marginal distribu-
tions of b given by F 1b 2 and F̂ 1b 2 , such that F̂ 1b 2 is a symmetric spread of F 1b 2. Then, the 
expected number of districts won by the gerrymanderer is higher for F̂ than for F.
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Intuitively, suppose that all signals have the same variance of preferences conditional on the 
signal. But, if the breakpoint is more likely to be near the center of the preference distribution, 
there is less uncertainty as to the voting patterns of extreme voters. For instance, suppose the 
breakpoint is normally distributed. If a voter has either b 5 20.5 or b 5 0.5, she will vote 
Republican either 31 percent or 69 percent of the time, quite a bit of uncertainty; but if a voter has 
either b 5 1.5 or b 5 2.5, she will vote Republican either 93 percent or 99 percent of the time. 
Extreme voters are thus more valuable to the gerrymanderer. Since an increase in the variance 
of the voter preference distribution increases the share of extreme voters in the population, the 
expected number of seats won increases.

The final comparative static concerns the number of districts.

Proposition 6: Suppose that the number of districts increases by an integer multiple (that is, 
doubles or triples). Then, the expected percentage of districts won by the gerrymanderer strictly 
increases.

In previous analyses in this literature, proportional increases in the number of districts has 
little import; if twice the number of districts are required, the existing districts are split into 
equal parts, and so the voter profiles of the districts do not change. Our model implies that such 
parfaits are inefficient. Instead, the gerrymanderer can do better by slicing within previous dis-
tricts, grouping the most and least Republican voters from an old district into one new district, 
and giving the all less extreme voters to the other.

IV.  Numerical Examples

In order to illustrate the characterization of the optimal gerrymandering strategy and its com-
parative statics, we report the results of a number of numerical examples in this section. The 
examples all assume that there are five districts and that the gerrymanderer is Republican. In 
these examples, we assume that the joint distribution of preferences and signals, F 1b, s 2 , is mul-
tivariate normal with parameters mb 5 ms 5 0 and covariance matrix g, with

	 sb
2	 rsbss

	 a 5 °            ¢ .
	 rsbss	 ss

2

This implies that both the signal distribution and the conditional preference distribution are 
themselves normal. Note that this assumption satisfies Conditions 1 and 2. In this base case, we 
assume a distribution of F 1b, s 2 such that b , N 10, 52 and r 5 0.5. Furthermore, we assume that 
ss 5 rsb so that G 1b Zs 2 , N As, sb

2
 Z s 5 sb

2 11 2 r 2 B . In all examples, we let B , N 10, 12 and set 
N 5 5. Note that these assumptions imply that, nominally, half the voters are Republicans and 
half are Democrats—without gerrymandering, each party would win 2.5 seats, in expectation.

Panel A of Table 1 highlights a number of features of the optimal strategy. First, the highest 
median district (District 1) consists of 62 percent from a slice from the right tail of the distribu-
tion and 38 percent from a slice from the left tail. These upper slices get progressively larger for 
the lower median districts. While District 4 comprises a whole slice, Districts 1 through 3 are 
formed by matching slices from the right and left tails. (District 5 consists of a whole slice con-
taining those voters remaining after removing the first four districts from the signal distribution, 
and so the fraction in the upper and lower slice is not relevant.) Second, note that the probability 
of winning District 1 is very high—87.5 percent. This means that those in the left-most part of 
the distribution have very little chance of gaining representation. Third, no districts are “thrown 
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away”; the gerrymanderer has more than a 13 percent chance of winning even the district least 
favorable to her. If she had “thrown away” the district—that is, put those with the lowest signal 
into it—then, in this example, she would win it only 1.4 percent of the time. Finally, the number 
of districts won in expectation in this case is 2.8, compared with a non-gerrymandered equal 
representation benchmark of 2.5. Hence, in this case, the ability to be the gerrymanderer leads 
to a 13 percent increase in the expected number of districts won.

Panel B illustrates how a change in the spread of the conditional preference distribution affects 
the gerrymanderer. In accordance with our comparative static results, the gerrymanderer does 
worse as the quality of her signal deteriorates. This is reflected in a lower probability of winning 
each district, and hence a lower overall value to being the gerrymanderer. For instance, note that 
when the signal is very coarse, sb

2
 Z s 5 4.5, the gerrymanderer wins only 2.54 districts in expec-

tation—barely more than the 2.5 won under proportional representation. Also, in the sb
2
 Z s 5 0.5 

case, the gerrymanderer has a 31 percent chance of winning district 5—if she “threw it away” 
that would be just 0.2 percent. Finally, although the expected districts won, and hence the value 
function is monotonic in sb

2
 Z s (as we have shown analytically), the probability of winning each 

district is not monotonic. Intuitively, as the signal becomes more informative, the gerrymanderer 
can cut the districts finer, but the probability of winning the votes of those with the lowest signals 
decreases. These two effects work in opposite directions, which leads to the potential nonmono-
tonicity of the probability of winning districts with “low” medians (here Districts 4 and 5).

Panel C shows how a change in the spread of the voter preferences affects the gerrymanderer. 
As voter preferences become more spread out, the gerrymanderer does better, as our comparative 

Table 1—Numerical Examples of Optimal Gerrymandering

Panel A. Baseline example
	 District

			1	    2	 3	 4	 5

	 Upper Slice	 0.62	 0.73	 0.91	1	  n/a
	 Lower Slice	 0.38	 0.27	 0.09	 0	 n/a
	 Prob (win)	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%

Panel B. Signal coarseness
	 Probability of winning district

Signal variance	 E[Districts won]	1	  2	 3	 4	 5

0.50	 3.46	 97.4%	 86.9%	 74.3%	 56.6%	 30.9%
2.50	 2.83	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
4.50	 2.53	 68.2%	 61.9%	 55.7%	 41.8%	 25.9%

Panel C. Spread of voter preferences
	 Probability of winning district

Preference variance	 E[Districts won]	1	  2	 3	 4	 5

3.0	 2.55	 71.0%	 62.3%	 55.6%	 41.2%	 25.1%
5.0	 2.83	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
25.0	 3.78	1 00.0%	 97.1%	 90.6%	 73.9%	1 6.4%

Panel D. Partisan bias of the population
	 Probability of winning district

% Republican	 E[Won]	 “Value”	1	  2	 3	 4	 5

30%	 2.04	 0.58	 49.4%	 47.0%	 40.7%	 27.8%	1 0.2%
40%	 2.44	 0.48	 87.0%	 73.0%	 52.3%	 25.1%	 6.2%
50%	 2.83	 0.33	 87.5%	 74.8%	 65.7%	 41.7%	1 3.7%
60%	 3.24	 0.20	 87.8%	 76.1%	 67.3%	 58.6%	 34.5%
70%	 3.67	 0.12	 90.2%	 79.6%	 71.7%	 65.0%	 59.1%
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static results showed. There is a monotonic increase in the probability of winning Districts 1–4 
as voter preferences become more spread out, since fewer extreme voters are necessary to pro-
vide a solid margin of victory (in expectation). A similar nonmonotonicity, as discussed above, 
is at work here with the probability of winning District 5.

Panel D reports how changes in the mean affect gerrymandering. A natural interpretation of 
a change in the mean is that it is a change in the number of nominal Republicans/Democrats. 
With the mean at zero, there are 50 percent nominal Republicans. As the mean increases, the 
share of nominal Republicans increases, and vice versa. Note that as the proportion of nominal 
Republicans increases, the expected number of seats won increases, and the value to being the 
gerrymanderer decreases. This value represents the difference in expected seats won compared 
to proportional representation.

V.  Extensions

In this section, we discuss some extensions to the basic model.

A. Majority Power, Risk Aversion, and District-Specific Objectives

Our analysis thus far has considered a gerrymanderer whose payoff function is equal to the 
expected number of districts won. This is likely a good approximation for congressional dis-
tricting, where the uncertainty over the eventual party balance in the House of Representatives 
makes each district in a given state equally important. But in state legislatures, other objectives 
may play an important role. For instance, a party might derive great benefit from remaining in 
the majority, in which case the gerrymanderer’s value function would include a positive discon-
tinuity at 50 percent of the seats. The marginal benefit to the gerrymanderer from each seat won 
might also be diminishing as she wins more seats, in which case the objective function would 
become concave. Finally, some districts may be more important than others, since different 
incumbents may be more valuable to the party than others. The next proposition shows that 
Propositions 1 and 2 characterize the optimum in all of these cases.

Proposition 7: Suppose that the gerrymanderer constructs districts so as to maximize

	 E sV a 1
N

  a
N

n51
wndnb t ,

where dn 5 1 if the Republicans win district n and dn 5 0 otherwise; V is any strictly increasing 
function; and 5wn6N

n51 are a strictly positive set of weights which add to 1. Then Propositions 1 
and 2 characterize the optimal partisan gerrymander.

Proposition 7 shows that our earlier analysis is robust to most any plausible gerrymanderer 
objective function. The key to this result is the fact that the domain of the underlying objec-
tive function comprises only a discrete subset of values, since one of the parties must actually 
win each seat in the election. Taking an expectation over this underlying function smooths out 
the problem, so that increasing the probability of winning any one district, holding the others 
constant, has a linear impact on the expected value of the redistricting scheme. Our earlier 
assumption of a linear objective function made this marginal impact the same across all districts. 
Extending our results to this broader case, where the slope of each impact may vary across dis-
tricts, merely adds a constant in our proofs, but the linearity ensures the proofs still go through.
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The only restriction we must place on the objective function is that the gerrymander must gain 
from winning another district. If, at some point, V were flat or decreasing, so that the gerryman-
derer was indifferent or averse to winning, our result would not hold. Similarly, we require that 
the weights 5wn6N

n51 be bounded away from zero, lest the gerrymanderer not care at all about a 
certain district.

Though Propositions 1 and 2 still hold, the effect of the optimal redistricting plan will vary 
as the underlying objective function changes. For instance, suppose the objective function were 
linear but for a positive discontinuity at winning a majority. Under normal circumstances, where 
the gerrymander possesses a commanding popular majority in the state, redistricters would now 
be risk averse and thus seek to win fewer districts but hold the majority with greater probabil-
ity. Practically, such a change would mean grouping larger numbers of Republican voters (the 
right-hand “slice”) into a small majority of the districts. On the other hand, if the gerrymanderer 
faces a hostile population (perhaps due to the inequities of gerrymanders past), the party would 
become risk-loving. The other two alternative objective functions we mentioned above—concav-
ity and unequal weighting among districts—manifest themselves in more straightforward ways 
in district composition, with incumbents making some districts more secure at the expense of 
others.

Risk-aversion also provides a simple rationale for ruling out cracking. As previously noted, 
a districting plan determines the probability of winning each district; and in the previous sec-
tions we have considered the mean of these probabilities. However, a celebrated theorem of 
Siméon-Denis Poisson (1837) allows us to analyze the variance as well. Substantially gener-
alizing the work of Bernoulli, Poisson showed that the variance of nonidentical independent 
trials p1, … , pn is

	 Var 1x 2 5 np̄11 2 p̄2 2 nsp
2,

where p̄ 5 1g n
i51 pi 2/n and sp

2 is the variance of p1, … , pn. It is immediate that, fixing p̄, the vari-
ance is reduced by “spreading out” (p1, … , pn). That is, the maximum variance of the number of 
successes (i.e., districts won) is achieved when p1 5 p2 5 … 5 pn. Further, Wassily Hoeffding 
(1956) showed that, fixing p̄, any increasing concave function of the number of successes is 
minimized when p1 5 p2 5 … 5 pn. These theorems show that cracking is suboptimal for a 
risk-averse gerrymanderer, since cracking involves making a number of districts have the same 
median voter type, and hence the same probability of winning. Under a pack-and-crack strategy, 
probabilities of winning districts are as follows:

(4)  	 p1
c 5 … 5 pk

c . pk
p
11 . … . pN

p ,

where superscripts p and c denote packed districts and cracked districts, respectively. The dis-
trict winning probabilities under the strategy of Propositions 1 and 2 is

(5)	 p1 . … . pN.

Now, consider a deviation toward (5) from the pack-and-crack strategy which generates (4). 
In particular, suppose two cracked districts are altered so that p̂1

c . p1
c and p̂2

c , p2
c, with p̂1

c 1 
p̂2

c 5 p1
c 1 p2

c. Proposition 2 tells us that there exists such a deviation with p̂1
c 1 p̂2

c . p1
c 1 p2

c, 
but to apply combinatoric theorems with the expected number of successes constant, we address 
the case where p̂1

c 1 p̂2
c 5 p1

c 1 p2
c. By Poisson’s Theorem the variance of the number of districts 

won under pack-and-crack is Np̄11 2 p̄2 2 N · Var 1p1
c, … , pN

p 2 . Under the proposed deviation, the 
variance is Np̄11 2 p̄2 2 N · Var 1p̂1

c, … , p̂N
p 2 . To show that the number of districts won under the 
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deviation is lower, we require Var 1p1
c, … , pN

p 2 , Var 1p̂1
c, … , p̂N

p 2 . That is, 1/NgN
i511pi 2 p̄22 , 1/N

gN
i511p̂i 2 p̄22. Removing common terms, this becomes 1p1

c 2 p̄22 1 1p2
c 2 p̄22 , 1p̂1

c 2 p̄22 1 1p̂2
c 

2 p̄22, or, equivalently, 1p2
c 2 p̄22 2 1p̂2

c 2 p̄22 , 1p̂1
c 2 p̄22 2 1p1

c 2 p̄22. Since p̂1
c . p1

c 5 p2
c . p̂2

c, 
the inequality holds.

Cracking, therefore, not only lowers the mean number of districts won, it also increases the 
risk borne by the gerrymanderer.

It is important to note that, since the aggregate shock affects all districts, the probabilities 
of winning districts are not independent trials. As we show, however, in Proposition 8 below, 
the analysis leading to Propositions 1 and 2 applies to the case where there are district-specific 
shocks. Therefore, treating the trials as we have here as independent is arguably a more general 
approach.

Applying Hoeffding’s Theorem to the kind of deviational argument just made, a deviation 
such as the one above is preferred by a gerrymanderer whose payoff function is increasing and 
concave in the number of districts won. Thus, pack-and-crack is suboptimal for any gerryman-
derer whose payoff is an increasing concave function of the number of districts won.

B. Policy Consequences

Our analysis has thus far considered only a districting scheme’s impact on party representa-
tion in the legislature. In this section, we consider the potential distance between the median 
voter’s preference and the actual outcome under the optimal partisan gerrymander.13 We have in 
mind a setting where district medians determine the preferences of legislators, who then vote on 
policy alternatives. To illustrate this, we consider the case where voter preferences are perfectly 
observable (i.e., b 5 s). Let each voter have a most preferred policy given by the c.d.f. H 1s 2 with 
continuous p.d.f. h 1s 2 . Assume that the median voter is given by H 1sm 2 5 1/2. Let the ideal policy 
of the median voter in district d be sm

d . Ordering these median voters within a district as sm
1 $ … 

$ sm
1N112/2 $ … sm

N, we have what we will refer to as the “representative median voter” sm
1N112/2. 

We take this to be the preference of the median legislator. For simplicity, we assume that N is 
odd—although nothing important hinges on this.

The question we ask here is: what is the difference in preferences between the representative 
median voter and the population median voter under the optimal gerrymander? That is, what is 
the magnitude of 0H 1sm

1N112/22 2 H(sm 2 0?
If the gerrymanderer maximizes H 1sm

1N112/22 , then—since the signal is perfect—Proposition 2 
tells us that this is achieved by combining a mass of voters with the highest bliss points with an 
(infinitesimally smaller) mass of voters with the lowest bliss points, and then continuing to match 
into the center of the distribution. Under this gerrymander, the median voter in the median dis-
trict is the left-most voter in the right-hand slice of district 1N 1 12/2. It is immediate that, under 
this gerrymander, limNS`H 1sm

1N112/22 5 limNS` 1N 1 12/4N 5 1/4, and hence 0H 1sm
1N112/22 2 H 1sm 2 0 

5 1/4. Therefore (for states with large numbers of districts14), under the optimal gerrymander, a 
minority constituting just 25 percent of the population can constitute a winning coalition.

Interestingly, the “dominance of the 25 percent majority” under representative systems was 
conjectured in the seminal work of James M. Buchanan and Gordon Tullock (1962, 221–22).

This analysis of policy consequences could be extended to the case of a noisy signal. We 
conjecture that the “buffer” of voters required by the gerrymanderer to equate median-like out-
comes becomes larger as the signal quality decreases, and hence  0H 1sm

1N112/22 2 H(sm 2 0 decreases 

13 We are grateful to an anonymous referee for suggesting this, as well as details of the approach.
14 For a state with 53 districts (e.g., California), H 1sm

1N112/22 5 0.255, and for a state with 5 districts is 0.3.
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monotonically in the quality of the signal. We have found this to be the case in a large number of 
numerical examples—but it remains a conjecture.

C. Candidate Effects

Another empirical regularity of congressional races is the seemingly large electoral advantage 
enjoyed by incumbents—fewer than 3 percent of incumbents are defeated in the typical election 
cycle. There are three possible causes for this edge. First, an incumbent may simply reflect the 
preferences of her constituents, or may generally be of high quality. In this case, incumbency is 
simply a proxy for match quality between a representative and her district, and one can say that 
incumbency, per se, has no effect. Second, the incumbent may be more well known to her con-
stituents in a variety of ways, and thus more easily elected; a (Republican) gerrymanderer would 
respond to this type of incumbent advantage by maintaining Republican incumbent districts as 
constant as possible, while matching Democratic incumbents to new and unfamiliar (though 
not necessarily different, from a signal profile perspective) districts. Indeed, such tactics were a 
key part of the Republican gerrymander of Texas in 2003. This effect is primarily a geographic 
concern, though, and is thus somewhat orthogonal to the predictions of our model.

A third source of advantage for an incumbent may be, broadly speaking, her résumé of con-
gressional experience and the resulting low quality of opponents, an edge which would follow 
her no matter the make-up of her district. Stephen Ansolabehere, James M. Snyder, and Charles 
Stewart III (2000) use the decennial redrawing of district boundaries to estimate that this third 
channel accounts for one-third to one-half of the incumbency advantage, on average, though 
there is surely much individual heterogeneity in the magnitude of the effect. The conclusions 
of our model would change in the presence of large incumbent effects of this third type, which 
would, in effect, make the distribution of the electoral breakpoint district-specific. For instance, 
suppose that a particular Democratic incumbent was universally well liked and assured of elec-
tion regardless of the composition of her district. It would then be optimal for a Republican ger-
rymanderer to “throw away” her district by including in it the most extreme Democrats.

We can model this extension by assuming that incumbent n (from district n) has an electoral 
advantage zn such that voters support the incumbent if b 2 A 1 zn . 0. Republicans have posi-
tive z’s, and Democratic incumbents have negative z’s. Furthermore, suppose that this advantage 
is independent of the voters in the incumbent’s district. As the intuition above suggests, our 
Lemma 3, and thus Proposition 1, fail with this addition. But, as the following proposition shows, 
Lemmas 1 and 2 still hold.

Proposition 8: Suppose that incumbent n in district n has an additional electoral advantage 
zn, and that F 1b, s 2 satisfies Conditions 1 and 2. Then, Lemmas 1 and 2 hold, while Lemma 3, 
in general, does not.

Though the ordering of the slices would be somewhat different, the main force of our results 
still hold. Optimal districts comprise only vertical slices, and such slices may not “interlock,” 
as in Lemma 2. This model does generate the familiar prescription of districts that are “thrown 
away,” but it does not generate “smoothing” across Republican voters, as in standard model. Of 
course, such a deviation depends on the magnitude of a quite particular effect of incumbency 
which, in practice, may be quite limited. Even the most well-liked politicians may have trouble 
attracting votes from affiliates of the opposite party; would Rep. Tom Delay still get elected if 
his district contained the poor inner cities of Houston instead of Sugarland? Nevertheless, this is 
the only extension from our model we discuss that does generate “throwing away” districts, and 
it perhaps deserves further study.
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D. Voter Turnout

In our model, we have implicitly assumed that everyone votes; obviously, in a system with non-
compulsory voting, voter turnout is a real and important issue. In theory, voter turnout could vary 
with any aspect of the individual or district; research on electoral participation suggests two sets 
of factors that might affect turnout. First, the literature has identified a number of individual attri-
butes—including education, age, marriage status, occupation, and ideological extremism—which 
affect the probability of voting (see Orley Ashenfelter and Stanley Kelly, Jr., 1975; Raymond 
Wolfinger and Steven Rosenstone 1980; John G. Matsusaka and Filip Palda 1993; Edward L. 
Glaeser, Giacomo A. M. Ponzetto, and Jesse Shapiro 2005). These factors do not have a direct 
impact on our results, since voter turnout exogenous to the creation of districts will not affect the 
predictions.

The political science literature has also found a number of district-specific effects. For instance, 
Kamhon Kan and C. C. Yang (2001) find that turnout is higher when the perceived differences 
between candidate ideological platforms are higher and when voters “fear” one candidate more 
than the other. But this type of effect will not change our characterization of the optimal strategy 
either, since all voters in a district would turn out more or less, depending on the particulars of 
district construction. Similarly, Ebonya Washington (2006) finds that black candidates increase 
turnout both among black and white voters, and the difference is not statistically significant.

A final class of models of endogenous turnout allows the probability of voting to depend on 
district-specific characteristics, but affects different voters within a district in different ways. For 
instance, people might be more or less likely to vote if their policy bliss point is closer to one of 
the candidate’s platform. Alternatively, moderate voters might be more or less likely to turn out 
if grouped in the same district with extreme voters from their own party, or extreme voters from 
different parties. Such models can change the structure of the optimal gerrymander; for instance, 
if extreme voters of one party make moderate voters from the other party less likely to vote, the 
matching of extreme democrats with extreme republicans may fail. Of course, the structure of 
the optimal strategy in our model could just as easily be reinforced if the opposite were true, and 
incensed Republican moderates turned out to oppose the more extreme Democrats with whom our 
strategy would match them. Since there is little evidence of either the presence or the direction of 
these effects, we do not explicitly model these factors here, but such efforts might be a plausible 
direction for future work.

VI.  Conclusion

This paper shows that existing intuitions for optimal partisan gerrymandering are rather mis-
leading—and are the consequence of simplifying assumptions. We have analyzed a more general 
model with a continuum of voter preferences and noisy signals of those preferences. The model 
nests major models in the literature as special cases. Smoothing supporters evenly is always subop-
timal. When the signal the gerrymanderer receives is precise enough, the optimal strategy involves 
matching extreme Republicans with extreme Democrats. This characterization of the optimal par-
tisan gerrymander is robust to a number of extensions, including alternative partisan objective 
functions.

The primary import of our paper is to suggest a reexamination of widely held intuitions about 
the effects of partisan gerrymandering. These intuitions are not simply academic speculations, 
but give rise to conventional wisdom about partisan gerrymandering which is not wholly accu-
rate. For instance, traditional models imply that groups that have very different preferences from 
the gerrymanderer do not fare so badly—that is, although gerrymandering makes them worse 
off than proportional representation, they are assured of a lower bound of representation due to 
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the gerrymanderer’s “throwing away” some districts. Our model has very different implications. 
Instead, because of the “matching slices” strategy, they are combined into districts with a larger 
group of voters who have extremely different preferences from them, and so they have very little 
representation as a result of gerrymandering. Thus, our model suggests that the negative conse-
quences of partisan gerrymandering for minority representation in government may be far worse 
than currently thought.

A natural question that follows from this analysis is to ask: who are the voters in the opposite tail 
of the distribution to the gerrymanderers? To illustrate this connection, suppose that the gerryman-
derer is a Republican and that African Americans are highly represented in the far-left tail of the 
signal distribution (i.e., they have characteristics that make them very likely to vote for Democrats). 
In this case, under the optimal gerrymander, African Americans would be placed in districts such 
that they receive very little representation. Data from the 2000 US Census and the 2000 presidential 
election suggest that African Americans do, indeed, constitute the far-left tail, and so an implemen-
tation of the optimal strategy, as characterized in this paper, would be severely disadvantageous to 
that population. The unmistakable implication of these facts is that partisan gerrymandering (when 
practiced by Republicans) and racial gerrymandering are basically synonymous in effect. Since the 
1960s, however, the Supreme Court has adopted a test based on intent, rather than effect.

A further implication of our analysis is that gerrymandering can be very valuable, and indeed 
is more valuable today than ever before. Technological advances have allowed gerrymanderers to 
gain better information about voters—in our model, a less coarse signal distribution in the sense 
of Blackwell—and draw boundaries with a finer pen. One would therefore expect parties to use an 
increasingly large amount of resources in order to become the gerrymanderer. Since the practice 
itself probably lowers social welfare (see Stephen Coate and Brian Knight (2006) for an illuminat-
ing analysis of socially optimal districting), spending resources on it merely exacerbates the social 
loss associated with partisan gerrymandering. This implies that the welfare loss from gerryman-
dering is linked to such technologies, and has grown over time.

There are two clear directions for future work. The first involves empirical investigations of ger-
rymandering in light of the theory developed here. The structure provided by our characterization 
of the optimal gerrymandering strategy is important for such empirical work. Previous empirical 
work on gerrymandering (see, for instance, Andrew Gelman and Gary King 1990, 1994) assumes 
a nonmicrofounded structural model which may give inaccurate estimates of the degree of ger-
rymandering. The second set of open issues involves the regulation of gerrymandering. Enriching 
the model to capture spatial considerations would make it possible to analyze the impact of con-
straints such as compactness. Although there is a body of work that attempts to deal with spatial 
considerations, the underlying models of gerrymandering they employ are, as we have discussed, 
insufficiently rich to capture the core intuitions of the optimal strategy.

Ultimately, the effect of gerrymandering is an empirical question. As our model highlights, the 
impact of it depends on the particulars of the signal and preference distribution. One thing this 
paper demonstrates, however, is that empirical investigations alone can be misleading. Without 
understanding the optimal strategy for a gerrymanderer, one cannot properly assess the impact of 
partisan gerrymandering.

Appendix

A. Monotonicity of Voting

We remarked in a footnote in the text that, under the assumption of single-crossing prefer-
ences, the probability that a voter votes Republican is increasing in her type. This is not of direct 
relevance to the other results in the paper, but may be of independent interest.
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Definition 3: Let X and Y be subsets of R, and let K : X 3 Y S R. We say that K is Totally 
Positive of order n (“TPn”) if x1 , … , xn and y1 , … , yn imply

	 K 1x1, y12  )  K 1x1, ym 2
	 ∞	 (	 (	 ∞ $ 0

	 K 1xm, y12  )  K 1xm, ym 2

for each m 5 1, … , n.

Theorem 1 (Karlin 1968): Let K be TPn on X 3 Y and let m be a s-finite measure on X. If 
f : R S R has at most k # n 2 1 sign changes, then for y [ Y,

	 f * 1y 2 5 3 f 1x 2K 1x, y 2 dm 1x 2

has at most k sign changes. Furthermore, if f  * has exactly k sign changes, then f and f  * have the 
same pattern of sign changes.

Total positivity of order two is familiar in economics and has had wide applications in the 
theory of moral hazard, as well as mechanism and market design.

Remark 1: Suppose that K 1x, y 2 is a probability density function, denoted f 1x Z y 2 , with respect 
to a s-finite measure m such that ef 1x Z y 2m 1dx 2 5 1. Then, if f 1x Z y 2 is TP2, then f 1x Z y 2 satisfies 
the MLRP.15

Karlin’s Theorem (commonly referred to as the Variation Diminishing Property (VDP)) allows 
us to observe that voters of higher type (higher i) are more likely to vote Republican provided 
g 1b Z s 2 is TP2. To see this, recall that, since voter preferences satisfy single-crossing (combined 
with our reordering), bi 5 ui 1R2 2 ui 1D2 is a monotonic function with one sign change. The 
stochastic objective f * 1s 2 5 ebg 1b Z s2 db is then also monotonic. Let k be an arbitrary constant 
and consider f * 1s 2 2 k 5 e1b 2 k 2g 1b Z s 2 db. Since b 2 k has only one sign change, the VDP 
implies that f * 1s 2 2 k has only one sign change. This immediately implies monotonicity of f * 1s 2 . 
Monotonicity of f * 1s 2 implies that for any two signals of voter types, i . j, the probability that 
type i votes Republican is greater than the probability that type j does.

B. Proofs

Proof of Lemma 1:
The maximization problem can be described by the Lagrangian

(6) 	  L 5 a
N

n51
B 1mn 2 2 a

N

n51
ln s3

`

2`

cn 1s 2 ds 2 
1
N
t ,

15 For the classic reference to likelihood ratios and their applications to economics, see Milgrom (1981).
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in addition to the boundary constraints. Note that the first-order necessary conditions imply

(7) 	  Dcn 1s 2 ab 1mn 2  
'mn

'cn 1s 2
 2 lnb 5 0 for n 5 i, j,     s 5 s1, s2.

Now, consider districts i and j, and suppose that mi , mj.
Throughout, whenever we speak of removing voters of type s, we refer to an interval 3s 2 e/2, 

 s 1 e/24 . Denote the derivative of the objective function with respect to a switch of voters of 
type s from district j to district i as fji 1s 2 . Then, for any e, the change in the value of the objec-
tive function is

	 DV 1s 2 5 3
s1e/2

s2e/2
fji 1s92 ds9.

Note that, as e S 0, the change in the value of the objective function from such a move approaches 
the derivative of the objective function at s multiplied by e, since

	 lim
eS0

3
s1e/2

s2e/2
fji 1s92 ds9 5 fji 1s 2e.

The derivative of the objective function from moving voters of type s from district j and add-
ing them to district i is

	 fji 1s 2 5 abi

'mi

'ci 1s 2
 2 lib 2 abj

'mj

'cj 1s 2
 2 ljb .

Implicitly differentiating (2), which determines the medians, yields

	 0 5 3
`

2`

g 1mi Z s 2ci 1s 2 ds0mi 1 G 1mi Z s 2 0cj 1s 2 ;

(8) 	
'mi

'ci 1s 2
 5 2

G 1mi 0s 2
e

`

2` 
g 1mi 0s 2ci 1s 2   ds

(9)	 ; 2
G 1mi 0s 2
gi 1mi 2

.

Hence, the change in the value of the objective function is

(10)	 DV 1s 2 5 e a b 1mj 2
gj 1mj 2

 G 1mj Z s 2 2 
b 1mi 2
gi 1mi 2

 G 1mi Z s 2 1 lj 2 lib .

Note that if fji 1s 2 . fji 1s92 , then DV 1s 2 . DV 1s92 for any e . 0. While equation (10) need not 
be positive for all s in district n, it must be, 5s9 [ cj and s [ ci, that fji 1s 2 $ fji 1s92 . Note that 
0fji 1s 2/0s . 0 is equivalent to z 1mj Z s 2/z 1mi Z s 2 , b 1mi 2gj 1mj 2/b 1mj 2gi 1mi 2 , and since the left-hand 
side is monotonically increasing in s from Condition 1, fji 1s 2 cannot be convex. If s1, s2 [ ci, 
then, for any point s9 [ 3s1, s2 4 , fji 1s92 . min 3fji 1s12 , fji 1s22 4 . Thus, s9 o cj, if e . 0.

This implies that any two districts j and i (where, without loss of generality mj . mi ) cannot 
share voters of the same type except on a set of measure zero.
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This also implies that districts must comprise vertical slices. Suppose that there exists an 
interval voter of types 3s 2 a, s 1 a 4 such that all voters of type s9 [ 3s 2 a, s 1 a 4 are in both 
districts j and i. This contradicts the statement above that if s1, s2 [ ci, then, for any point s9 [ 
3s1, s24 , s9 o cj, if e . 0.

Proof of Lemma 2:
    Suppose, by way of contradiction, that there exist districts j and i such that mj 5 mi, and that 
there exist intervals of positive measure about types s1 and s2 (with s1 . s2), which are in both 
districts. Consider moving a small mass from an interval about s1 into district j and a comparable 
mass of voters around s2 back into district i. The first-order conditions imply that the net gain, 
which must equal zero, is proportional to

(11) 	
b 1mj 2
gj 1mj 2

 3G 1mj Z s22 2 G 1mj Z s12 4 2 
b 1mi 2
gi 1mi 2

 3G 1mi Z s22 2 G 1mi Z s12 4

for e . 0. Since mi 5 mj , we know that b 1mj 2 5 b 1mi 2 and G 1mi Z s22 2 G 1mi Z s12 5 G 1mj Z s22 2 
G 1mj Z s12 . Therefore, it must be that gi 1mi 2 5 gj 1mj 2 .

Consider, again, the districts j and i with mi 5 mj. By Lemma 1, those voters in districts j and 
i must make up one or two complete vertical slices of h 1s 2 . Since F has full support and the two 
aforementioned slices contain a positive interval of voter types, there must exist four voter types 
s1 , s2 , mj , s3 , s4 such that G 1mj Z s12 2 G 1mj Z s22 5 G 1mj Z s32 2 G 1mj Z s42 and ci 1s12 . 0, 
ci 1s42 . 0, cj 1s22 . 0, and cj 1s32 . 0. In words, one district contains some of the inner type of 
voters, while the other district contains some of the more extreme types of voters relative to the 
district medians.

Now, consider a perturbation in which an equal mass of voters around type s1 and around type 
s4 are transferred to district j from district i, and similarly an equal mass of voters around type 
s2 and around type s3 are transferred from district j to i. By construction, both mj and mi remain 
unchanged, as does the value function; but gi 1mi 2 and gj 1mj 2 have changed. By definition,

	
'gi 1mi 2
'c 1s 2  5 g 1mi Z s 2 ,

and so the derivative of gi 1mi 2 for perturbations of this type is

	 0gi 1mi 2 5 e a'gi 1mi 2
'c 1s2 2

 2 
'gi 1mi 2
'c 1s1 2

 1 
'gi 1mi 2
'c 1s3 2

 2 
'gi 1mi 2
'c 1s4 2

b

	  5 e 1g 1mi Z s22 2 g 1mi Z s12 1 g 1mi Z s32 2 g 1mi Z s42 2 .

But, by Condition 2, the modes of the lower signals lie below mi. Thus, we know that g 1mi Z s22 . 
g 1mi Z s12 , and similarly that g 1mi Z s32 . g 1mi Z s42 , and so 0gi 1mi 2 . 0, for e . 0. By similar rea-
soning, 0gj 1mj 2 , 0. After performing such a perturbation, the new districting arrangement has 
mj 5 mi, while gi 1b 2 ? gj 1b 2 . This now violates the condition above, which holds that for two 
districts that share a positive mass of voters and for which mj 5 mi, it must be that gi 1b 2 5 gj 1b 2 . 
This new arrangement is not optimal, but the value function is unchanged from the old district-
ing plan, and so the old plan cannot be optimal either—a contradiction.
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Proof of Lemma 3:
Suppose, by way of contradiction, that such a case existed. Without loss of generality, from 

Lemma 1, we can assume that districts i and k each comprise one whole slice. It also must be that 
s* , s9 for all s9 [ ci and that s* . s0 for all s0 [ ck. Denote s̄i 5 sup 5s [ ci6, s̄k 5 sup 5s [ 
ck6, s¯ i 5 inf 5s [ ci6, and s

¯k 5 inf 5s [ ck6. Of course, s̄i . s
¯ i . s* . s̄k . s

¯k.
The Lagrangian from equation (6) implies that, if s [ cj, then

	 e 12aj G 1mj Z s 2 2 lj) $ e  max
n

 12anG 1mn Z s 2 2 ln 2

for all districts n, and, hence,

	 2aj G 1mj Z s 2 2 lj $ max
n

 12anG 1mn Z s 2 2 ln 2 , 5e . 0,

where an 5 b 1mn 2/gn 1mn 2 . These an coefficients represent the sensitivity of the median of district 
n to changes. For each district n, denote these expressions by hn. We know that

	 hi 1 s̄i 2 $ hj 1 s̄i 2 and hj 1s*2 $ hi 1s*2 ,

which implies that

	 G 1mi Z s
*2 2 G 1mi Z s̄i 2(12) 	  aj # ai                          .

G 1mj Z s
*2 2 G 1mj Z s̄i 2

Equation (12) states that district j must not be too sensitive compared to district i. Were this so, a 
profitable deviation would exist by shifting district i down to include s* and giving voters of type 
s̄i to district j. Similar arguments imply that

G 1mk Z s¯k 2 2 G 1mk Z s
*2

(13)  	 aj $ ak                            ,
	 G 1mj Z s¯k 2 2 G 1mj Z s

*2

which has the interpretation that district j must be sensitive enough relative to district k so that 
shifting district k up to include s* is not profitable. Of course, (12) and (13) can hold simultane-
ously only if the right-hand side of (12) is greater than or equal to the right-hand side of (13). 
This requires

	 G 1mi Z s
*2 2 G 1mi Z s̄i 2	 G 1mj Z s¯k 2 2 G 1mj Z s

*2
(14) 	

ak

ai
 5 

b 1mk 2gi 1mi 2
b 1mi 2gk 1mk 2

 #                                     .
	 G 1mk Z s¯k 2 2 G 1mk Z s

*2	 G 1mj Z s
*2 2 G 1mj Z s̄i 2

Now, consider what happens to this ratio as we increase the precision of the signal (which 
can be thought of here as shrinking the conditional preference distribution G into the median). 
Since district i contains voters closer in signal to the median of district j, the ratio 3G 1mj Z s¯k 2 2 
G 1mj Z s

*2 4/ 3G 1mj Z s
*2 2 G 1mj Z s̄i 2 4 will shrink, going to 0 in the limit. On the other hand, both 

G 1mi Z s
*2 2 G 1mi Z s̄i 2 and G 1mk Z s¯k 2 2 G 1mk Z s

*2 rise to 1, since s
¯k , mk , s* , mi , s̄i . Thus, the 

right-hand side of (14) shrinks to 0 as the precision of the signal increases. Note, however, that 
the ratio ak  /ai is bounded away from 0, since gi 1mi 2/gk 1mk 2 will limit to 1 (by the definition of 
g 1m 2) and b 1mk 2 /b 1mi 2 is bounded away from 0 since the medians mi and mk are bounded and 

Case: 3:15-cv-00421-jdp   Document #: 72-4   Filed: 01/26/16   Page 27 of 32



March 2008140 THE AMERICAN ECONOMIC REVIEW

the c.d.f. B is strictly increasing. Thus, for sufficiently high signal quality, the inequality in (14) 
cannot hold—a contradiction.

Proof of Proposition 1:
Apply Lemmas 1–3.

Proof of Proposition 2:
Suppose not. Consider the districting plan that entirely packs. That is, consider the districting 

plan described by N 2 1 cutoffs 5tn6 n
N

5
2

1
1 (where t1 . t2 . … . tN21) such that s [ cn if and only 

if s [ 3tn, tn214 . (For notational ease, suppose that t0 5 ` and tN 5 2 .̀) Consider the marginal 
gain from moving voters of type tn from district n to district n 1 1 and moving voters from the 
far-left tail to district 1. Following the first-order condition in equations (7) and (9) (contained in 
the Appendix in the proof of Lemma 1 p. 137), the impact on mn for n . 1 is

	 Dmn 5 e a b 1mn 2
gn 1mn 2

  3G 1mn Z tn 2 2 G 1mn Z tn212 4 b . 0,

since tn , mn , tn21 and, therefore, G 1mn Z tn 2 . 0.5 . G 1mn Z tn212 . We use e here to denote 
the small positive mass of voters moved in each shift, as we discuss in detail in the proof of 
Lemma 1. The impact on m1 will be

	 Dm1 5 e a b 1m1 2
g1 1m1 2

  3G 1m1 Z t12 2 G 1m1 Z tN2 4 b , 0,

where, for these purposes,

	 G 1m1 Z tN2 5 lim
sS2`

 G 1m1 Z s 2 5 1.

Note further that, by the definition of t1 and m1, G 1m1 Z t12 . 0.5.
Now, consider increasing the signal quality, which is to say decreasing the spread of the condi-

tional distribution of b given s about the center of that distribution. Note that G 1b Z s 2 is centered 
around s by Condition 2, and so, if G 1mn Z s 2 . 0.5, then 0G 1mn Z s 2/0s2

b Z s , 0, so that G 1mn Z s 2 
increases as the signal quality increases. (When we shrink s2

b Z s , we refer to a reduction in the 
spread of the distribution around the median and mode of s, rather than the mean, so as to main-
tain Condition 2.) If G 1mn Z s 2 , 0.5, then 0G 1mn Z s 2 /0s2

b Z s . 0. The term g11m12 will also increase, 
but it is (by definition) bounded above by the marginal distribution of b in the population. Thus, 
we know that, at least for high enough signal quality,

0Dmn	        . 0  5n,
	 s2

b Z s

which implies that

	 0
	       a

N

n51
Dmn 5 e 

b 1m1 2
g1 1m1 2

 . 0.
s2

b Z s
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The aggregate impact on the expected number of seats won from the proposed deviation becomes 
more positive or less negative as the signal quality increases. Finally, note that

	 lim  G 1m1 Z t12 5 1,
                                            s2

b Z sS0

so that

	 lim  Dm1 5 0,
                                                 s2

b Z sS0

while

	 lim  Dmn . 0, n Z 1,
                                           s2

b Z sS0

and therefore

	 lim    a
N

n51
Dmn . 0.

                                              s2
b Z sS0

Since the sum converges to the limit as s2
b Z s decreases, we know that there exists s–

2 such that 
gN

n51Dmn . 0 whenever s2
b Z s , s–

2.

Proof of Proposition 3:
Suppose not. The choice variable for each district can be summarized by cn, the proportion 

of R in the district. Then, there exist two districts j and i such that cj Z ci and cn . 0 for n 5 
5  j, i6. Without loss of generality, let mj . mi. By Condition 1, G 1b Z r 2 first-order stochastically 
dominates G 1b Z d 2 , and so cj . ci.

In order that there be no profitable deviations, it must that 0mi  /0ci 5 0mj  /0cj . But, in general,

	 A 3g 1m Z d 2 2 g 1m Z r 2 4b 1m 2 1 3G 1m Z d 2 2 G 1m Z r 2 4b9 1m 2 B
	

'2m

'c2
n
 5 

'mn

'cn

g 1m 2 2  µ	    3 3cn 1g 1m Z r 2 2 g 1m Z d 2 2 1 g 1m Z d 2 4	 ∂ ,

	     2 b 1m 2 3G 1m Z d 2 2 G 1m Z r 2 4 3g9 1m 2 1 g 1m Z r 2 2 g 1m Z d 2 4

which is positive when m , 0 and negative when m . 0. Since m . 0 3 c . 0.5, the concavity 
of m implies that one could never have cj . ci $ 0.5, since then 0mi  /0ci . 0mj  /0cj , and so R 
could do better by increasing i and decreasing j. It also implies that there cannot be 0.5 . cj $ 
ci, since then 0mi  /0ci , 0mj  /0cj and the opposite deviation would improve R’s representation. 
Thus, there can be only one “odd district” with 0 , c , 0.5, and all districts with c . 0.5 must 
have equal proportions of r and d.

Suppose that N S .̀ Note that there can be only one odd district. Let the mass of voters in this 
district have Lebesgue measure t. Since each district must have an equal mass of voters, t 5 1/N. 
Clearly, limNS`t 5 0.

Proof of Proposition 4:
First, note that signal precision provides a partial ordering on conditional preference distribu-

tion. If the signal contains no information, the expected number of seats won by the gerrymanderer 
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is the population share. If the signal is perfectly precise such that s 5 b, it is possible (see 
Proposition 1) to create districts such that only the lowest median district has a median equal to 
the population median, while all others lie above. Hence, the gerrymanderer wins more seats in 
expectation with a perfect signal. Now, consider any two conditional preference distributions g 
and g9 such that g provides a more precise signal than g9. The gerrymanderer must win at least as 
many seats in expectation under g than g9 since the value function has the Blackwell Property. 
That is, she could construct a distribution c such that from g she could generate g9.

Proof of Proposition 5:
Fix the optimal districting plan under F 1b, s 2 and consider the construction of the highest 

median district (without loss of generality, District 1) with median m1 given by es[c1
G 1m1 Z s 2h 1s 2 

ds 5 1/2N, comprising an upper and lower slice. Let the upper slice contain w1 share of the voters 
in the district. Suppose that, under F̂ 1b, s 2 , the gerrymanderer sets m̂1 5 m1. This can be achieved 
with at least as small an upper slice ŵ1 # w1, since the Republican voters (who make up more 
than half of the district) are at least as likely to vote Republican as before. If ŵ1 , w1, then note 
that all other districts 2, … , N have a higher medians even if we set ŵi 5 wi for all i, that is, with-
out reoptimizing their construction. If ŵ1 5 w1, then repeat this procedure until finding a district 
n* such that ŵn* , wn* . By assumption that F̂ has greater symmetric spread than F, this must be 
true for at least one district. Hence the value function under F̂ 1b, s 2 is higher than under F 1b, s 2 . 
This reasoning must hold for any such pair of distributions.

Proof of Proposition 6:
Consider an increase from N districts to mN, where m is an integer. By replication, the ger-

rymanderer could do at least as well with mN districts as with N—but this replication involves 
creating parfaits. From Lemma 2, this is a suboptimal strategy. Hence, the value function under 
the optimal strategy must be higher.

Proof of Proposition 7:
Suppose that the objective function is now

	 E sVq1
N

  a
N

n51
 wn dnr t ,

and suppose that V is a strictly increasing function. We can rewrite this expression as the sum 
of V 1D2 , where D 5 0, … , N, weighted by the combinatorial probability that the Republicans 
win exactly D districts. Note that this expression can be factored into two parts: those outcomes 
where R wins some district n, and those where R loses district n. Since the probability of winning 
a district is just B 1mn 2 , this expression is just

	 B 1mn 2Kn 1 11 2 B 1mn 2 2Ln  ,

where Kn 5 E 3V 0dn 5 14 , the expected value if the Republican candidate wins in district n; and 
Ln 5  E 3V 0dn 5 04 , the expected value if the Democrat wins in district n. Now, fix the districting 
scheme and consider the marginal benefit from a small deviation x in district n, which is

	
'E 3V 4
'x

 5 b 1mn 2 1Kn 2 Ln 2  
'mn

'x
 .
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The conditions from (7) must still hold for these new first-order conditions, but note that this 
expression is identical to the value derived in equation (7) but for the term 1Kn 2 Ln 2 , which is 
fixed for all deviations from a districting plan. Thus, the “sensitivities” 5an6N

n51 (as in Lemma 3) 
are now differently scaled, but the constant does not affect any proofs. Propositions 1 through 
6 hold.

Proof of Proposition 8:
Suppose candidates are each associated with an electoral benefit zn such that voters support 

them if b 2 A 1 zn . 0. In this case, the Republican candidate wins district n if and only if mn 
1 zn . A, which occurs with probability B 1mn 1 zn 2 . The marginal benefit to R from a small 
deviation x in district n would be

	
'V
'x

 5 b 1mn 1 zn 2
'mn

'x
 .

Since the district-specific constant b 1mn 1 zn 2 cancels out in Lemma 1, the proof still holds. 
Lemma 2 is similarly unaffected, as the constant does not affect the proofs. In Lemma 3, the 
ratio ak /ai 5 b 1mk 1 zk 2gi 1mi 1 zi 2  / b 1mi 1 zi 2gk 1mk 1 zk 2 is no longer bounded away from 0, 
because gi 1mi 1 zi 2 need not limit to 1 as the precision of the signal increases.
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Luc Anselin

Local Indicators of Spatial Association-LISA

The capabilities for visualization, rapid data retrieval, and manipulation in geo-
graphic information systems (GIS) have created the need for new techniques of
exploratory data analysis that focus on the "spatial" aspects of the data. The
identification of local patterns of spatial association is an important concern in
this respect. In this paper, I outline a new general class of local indicators of
spatial association (LISA) and show how they allow for the decomposition of
global indicators, such as Moran's I, into the contribution of each observation.
The LISA statistics serve two purposes. On one hand, they may be interpreted
as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi
and G; statistics of Getis and Ord (1992). On the other hand, they may be used
to assess the influence of individual locations on the magnitude of the global
statistic and to identify "outliers," as in Anselin's Moran scatterplot (1993a).
An initial evaluation of the properties of a LISA statistic is carried out for the
local Moran, which is applied in a study of the spatial pattern of conflict for
African countries and in a number of Monte Carlo simulations.

1. INTRODUCTION

The increased availability of large spatially referenced data sets and the sophis-
ticated capabilities for visualization, rapid data retrieval, and manipulation in
geographic information systems (GIS) have created a demand for new tech-
niques for spatial data analysis of both an exploratory and a confirmatory nature
(Anselin and Getis 1992; Openshaw 1993). Although many methods are avail-
able in the toolbox of the geographical analyst, only few of those are appropri-
ate to deal explicitly with the "spatial" aspects in these large data sets (Anselin
1993b).

In the analysis of spatial association, it has long been recognized that the as-
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sumption of stationarity or structural stability over space may be highly unrea-
listic, especially when a large number of spatial observations are used. Spatial
structural instability or spatial drift has been incorporated in a number of mod-
eling approaches. For example, discrete spatial regimes are accounted for in
spatial analysis of variance (Griffith 1978, 1992; Sokal et al. 1993), and in regres-
sion models with spatial structural change (Anselin 1988, 1990). Continuous
variation over space is the basis for the spatial expansion paradigm (Casetti
1972, 1986; Jones and Casetti 1992) and spatial adaptive filtering (Foster and
Gorr 1986; Gorr and Olligschlaeger 1994). In exploratory spatial data analysis
(ESDA), the predominant approach to assess the degree of spatial association
still ignores this potential instability, as it is based on global statistics such as
Moran's I or Geary's c (as in Griffith 1993). A focus on local patterns of asso-
ciation (hot spots) and an allowance for local instabilities in overall spatial
association has only recently been suggested as a more appropriate perspective,
for example, in Getis and Ord (1992), Openshaw (1993), and Anselin (1993b).
Examples of techniques that reflect this approach are the various geographical
analysis machines developed by Openshaw and associates (for example, Open-
shaw, Brundson, and Charlton 1991; and Openshaw, Cross, and Charlton 1990),
the distance-based statistics of Getis and Ord (1992) (see also Ord and Getis
1994), and the Moran scatterplot (Anselin 1993a). Also, a few approaches have
been suggested that are based on a geostatistical perspective, such as the pocket
plot of Cressie (1991) and the interactive spatial graphics of Haslett et al. (1991).

In the current paper, I elaborate upon this general idea and outline a class of
local indicators of spatial association (LISA). These indicators allow for the de-
composition of global indicators, such as Moran's I, into the contribution of
each individual observation. I suggest that this class of indicators may become
a useful addition to the toolbox of ESDA techniques in that two important
interpretations are combined: the assessment of significant local spatial cluster-
ing around an individual location, similar to the interpretation of the Gi and G;
statistics of Getis and Ord (1992); and the indication of pockets of spatial non-
stationarity, or the suggestion of outliers or spatial regimes, similar to the use of
the Moran scatterplot of Anselin (1993a).

In the remainder of the paper, I first outline the general principles underly-
ing a LISA statistic, and suggest how it may be interpreted. I next show how a
number of familiar global spatial autocorrelation statistics may be expressed in
the form of a LISA. As an example of a LISA, I examine the local Moran more
closely, first empirically, comparing it to the G; statistic and the Moran scatter-
plot in an analysis of spatial pattern of conflict between African nations in the
period 1966-78. This is followed by a series of simple Monte Carlo experi-
ments, to provide further insight into the properties of the local Moran, its
interpretation, and the relation between global and local spatial association. I
close with some concluding remarks on future research directions.

2. LOCAL INDICATORSOF SPATIALASSOCIATION

Definition

As an operational definition, I suggest that a local indicator of spatial associa-
tion (LISA) is any statistic that satisfies the following two requirements:

a. the LISA for each observation gives an indication of the extent of significant
spatial clustering of similar values around that observation;

b. the sum of LISAs for all observations is proportional to a global indicator of
spatial association.
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More formally, but still in general terms, I express a LISA for a variable Yi,
observed at location i, as a statistic Li, such that

Li = !(Yi, YJJ, (1)

where ! is a function (possibly including additional parameters), and the YJi are
the values observed in the neighborhood Ji of i.

The values Y used in the computation of the statistic may be the original (raw)
observations, or, more appropriately, some standardization of these in order to
avoid scale dependence of the local indicators, similar to the practice often
taken for global indicators of spatial association. For example, in Moran's I, as
well as in its local version discussed in the next section, the observations are
taken as deviations from their mean.

The neighborhood Ji for each observation is defined in the usual fashion, and
may be formalized by means of a spatial weights or contiguity matrix, W. The
columns with nonzero elements in a given row of this matrix indicate the rele-
vant neighbors for the observation that corresponds to the row, that is, the ele-
ments of J;. Examples of criteria that could be used to define neighbors are
first-order contiguity and critical distance thresholds. The spatial weights matrix
may be row-standardized (such that its row elements sum to one) to facilitate
interpretation of the statistics, but this is not required. However, when row
standardization is carried out, the function !(Yi, YJJ typically corresponds to a
form of weighted average of the values at all observations j E J;.

The Li should be such that it is possible to infer the statistical significance of
the pattern of spatial association at location i. More formally, this requires the
operationalization of a statement such as

Frob [Li > 8i] :::;O:i, (2)

where 8i is a critical value, and O:iis a chosen significance or pseudo significance
level, for example, as the result of a randomization test.

The second requirement of a LISA, that is, its relation to a global statistic,
may be stated formally as

L Li = "(A, (3)

where A is a globalindicatorof spatialassociationand "( is a scale factor. In other
words, the sum of the local indicators is proportional to a global indicator. For the
latter, a statement such as

Frob [A > 8] :::;0:, (4)

indicates significant spatial association over the whole data set.

Identification of Local Spatial Clusters

Local spatial clusters, sometimes referred to as hot spots, may be identified as
those locations or sets of contiguous locations for which the LISA is significant.
Similar to the rationale behind the significance tests for the Gi and G: statistics
of Getis and Ord (1992), the general LISA can be used as the basis for a test on
the null hypothesis of no local spatial association. However, in contrast to what
holds for the Gi and G: statistics, general results on the distribution of a generic
LISA may be hard to obtain. This is similar to the problems encountered in
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deriving distributions for global statistics, for which typically only approximate
or asymptotic results are available'! An alternative is the .use of a conditional
randomization or permutation approach to yield empirical so-called pseudo
significance levels (for example, as in Hubert 1987). The randomization is con-
ditional in the sense that the value Yi at a location i is held fixed (that is, not
used in the permutation) and the remaining values are randomly permuted
over the locations in the data set. For each of these resampled data sets, the
value of Li can be computed. The resulting empirical distribution function pro-
vides the basis for a statement about the extremeness (or lack of extremeness)
of the observed statistic, relative to (and conditional on) the values computed
under the null hypothesis (the randomly permuted values). In practice, this is
straightforward to implement, since for each location only as many values as
there are in the neighborhood set need to be resampled. Note that this same
approach can also easily be applied to the Gi and GT statistics.

A complicating factor in the assessment of significance of LISAs is that the
statistics for individual locations will tend to be correlated, as pointed out by
Ord and Getis (1994) in the context of their Gi and GT statistics. In general,
whenever the neighborhood sets Ji and Jk of two locations i and k contain
common elements, the corresponding Li and Lk will be correlated. Due to
this correlation, and the associated problem of multiple comparisons, the usual
interpretation of significance will be Hawed. Moreover, it is typically impossible
to derive the exact marginal distribution of each statistic and the significance
levels must be approximated by Bonferroni inequalities or following the ap-
proach suggested in Sid:ik (1967).2 This means that when the overall significance
associated with the multiple comparisons (correlated tests) is set to a, and there
are m comparisons, then the individual significance ai should be set to either
aim (Bonferroni) or 1 - (1 - a)l/m (Sidak). The latter procedure, which yields
slightly sharper bounds, is suggested by Ord and Getis (1994), with m = n,
that is, the number of observations.3 Note that the use of Bonferroni bounds
may be too conservative for the LISA of individual locations. For example, if
m is indeed taken to equal the number of observations, then an overall signifi-
cance of a = 0.05 would imply individual levels of ai = 0.0005 in a data set with
one hundred observations, possibly revealing only very few if any "significant"
locations. However, since the correlation between individual statistics is due to
the common elements in the neighborhood sets, only for a small number of loca-
tions k will the statistics actually be correlated with an individual Li. For example,
on a regular lattice using the queen criterion of contiguity, first-order neighbors
(ignoring border and corner cells) will have four common elements in their neigh-
borhood sets, second-order neighbors three, and higher-order neighbors none.
Clearly, the number of common neighbors does not change with the number of
observations, so that using the latter in the computation of the Bonferroni bounds
may be overly conservative. Hence, while it is obvious that some correction to the
individual significance levels is needed, the extent to which it is indeed necessary
to take m = n remains to be further investigated.

1With the exceptionof the results in Tiefelsdorfand Boots (1994),the general statement by Cliff
and Ord (1981, p. 46) still holds: "except for very small lattices, exact evaluation of the distribution
function is impractical and approximations must be found."

2An application of these procedures to the interpretation of the significance of a spatial correlo-
gram was earlier suggested by Oden (1984).

3Note that the Sid:ik approach only holds when the statistics under consideration are multivariate
normal, which is unlikely to be the case for the general class of LISA statistics [see also Savin (1980)
for an extensive discussion of the relative merits of various notions of bounds].
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Indication of Local Instability

The indication of local patterns of spatial association may be in line with a
global indication, although this is not necessarily the case. In fact, it is quite
possible that the local pattern is an aberration that the global indicator would
not pick up, or it may be that a few local patterns run in the opposite direction
of the global spatial trend. The second requirement in the definition of a LISA
statistic is imposed to allow for the decomposition of a global statistic into its
constituent parts. This is of interest to assess the extent to which the global
statistic is representative of the average pattern of local association. If the
underlying process is stable throughout the data, then one would expect the
local indications to show little variation around their average. In other words,
local values that are very different from the mean (or median) would indicate
locations that contribute more than their expected share to the global statistic.
These may be outliers or high leverage points and thus would invite closer scru-
tiny. This interpretation is roughly similar to the use of Cressie's (1991) pocket
plots in geostatistics. By imposing the requirement that the Li sum to a magni-
tude that is proportional to a global statistic, their distribution around the mean
"lAin can be evaluated. Extreme Li can be identified as outliers in this distribu-
tion, for example, as those values that are more than two standard deviations
from the mean (the two-sigma rule) or more than 1.5 times the interquartile
range larger than the third quartile (for example, in a box plot).

This second interpretation of the LISA statistics is similar to the use of a
Moran scatterplot to identify outliers and leverage points for Moran's I (Anse-
lin 1993a). In general, it may be more appropriate than the interpretation of
locations as hot spots suggested in the previous section when an indicator of
global spatial association is significant. In this respect, it is important to note
that the Getis-Ord Gi and G: statistics were suggested to detect significant
spatial clustering at a local level when global statistics do not provide evidence
of spatial association (Getis and Ord 1992, p. 201). Indeed, in their example,
Getis and Ord find no global autocorrelation for SIDS cases in North Carolina
counties, while several significant local clusters are indicated. However, the op-
posite case often occurs as well, that is, a strong and significant indication of
global spatial association may hide totally random subsets, particularly in large
data sets. For example, in an analysis of the 1930 elections in Weimar Germany,
O'Loughlin, Flint, and Anselin (1994) found that a highly significant Moran's I
at the level of 921 electoral districts in effect hides several distinct local patterns
of spatial clustering and complete spatial randomness for six regional subsets. In
such an instance, the distribution of the Li statistic as indicator of local spatial
clustering will be affected by the presence of global spatial association. How-
ever, the second interpretation of LISA statistics, as indications of outliers or
leverage points in the computation of a global statistic is not affected. I return
to this issue in section 5.

3. LISA FORM OF FAMILIAR SPATIAL AUTOCORRELATION STATISTICS

Local Gamma

A broad class of spatial association statistics may be based on the general
index of matrix association or r index, originally outlined in Mantel (1967). The
application of the r index to spatial autocorrelation in a wide range of contexts
is described in a series of papers by Hubert and Golledge (for example, Hubert
1985; Hubert, Golledge, and Costanzo 1981; Hubert et al. 1985; Costanzo,
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Hubert, and Golledge 1983).4 Such an index consists of the sum of the cross
products of the matching elements aij and bij in two matrices of similarity, say
A and B, such that

r = L L aijbij.
j

(5)

Measures of spatial association are obtained by expressing spatial similarity in
one matrix (for example, a contiguity or spatial weights matrix) and value simi-
larity in the other. Different measures of value similarity yield different indices
for spatial association. For example, using aij = XiXj yields a Moran-like meas-
ure, setting aij = (Xi - Xj)2 yields a Geary-like index, while taking aij = Ixi - xjl
results in an indicator equivalent to the one suggested by Royaltey, Astrachan,
and Sokal (1975) [see, for example, Anselin (1986) for details on the implemen-
tation].

Since the r index is a simple sum over the subscript i, a local Gamma index
for a location i may be defined as

ri = L aijbij.
j

(6)

Similar to what holds for the global r measure, different measures of value simi-
larity will yield different indices of local spatial association. It is easy to see that
the ri statistics sum to the global measure r. It is possible that the distribution
of the individual ri can be approximated using the principles outlined by Mielke
(1979) and Costanzo et al. (1983), though this is likely to be complex, and beyond
the current scope. On the other hand, the implementation of a conditional permu-
tation approach is straightforward. This allows the individual r i to be interpreted
as indicators of significant local spatial clusters. The second interpretation of the
LISA statistic, as a diagnostic for outliers or leverage points can be carried out
by comparing the distribution of the ri to r In.

Local Moran

As a special case of the local Gamma, a local Moran statistic for an observa-
tion i may be defined as

Ii = Zi L WijZj,
j

(7)

where, analogous to the global Moran's I, the observations Zi, Zj are in deviations
from the mean, and the summation over j is such that only neighboring values
j E Ji are included. For ease of interpretation, the weights Wij may be in row-
standardized form, though this is not necessary, and by convention, Wii = O.

It can be easily seen that the corresponding global statistic is indeed the
familiar Moran's I. The sum of local Morans is

L Ii = L zi L WijZj,
i i j

(8)

while Moran's I is

4 Note that this statistic also forms the basis for the derivation of the distribution of Moran's I and

Geary's c statistics in Cliff and Ord (1981, p. 23 and chapter 2). In Getis (1991), this index is applied
to integrate spatial association statistics and spatial interaction models into a common framework.
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1= (n/So) L L WijZiZj/Lz;,
j

(9)

or

1= ~ I;j[SO(~zUn)l (10)

whereSo= Li L Wi". Using the same notation as Cliff and Ord (1981, p. 45),
and taking m2 = fi zf/n as the second moment (a consistent, but not unbiased
estimate of the variance), the factor of proportionality between the sum of the
local and the global Moran is, in the notation of (3),

I = SOm2' (11)

Note that for a row-standardized spatial weights matrix, So = n, so that
1= Li z;, and for standardized variables (that is, with the mean subtracted and
divided by the standard deviation), m2 = 1, so that I = So. Also, the same type
of results obtain if instead of (7) each local indicator is divided by m2, which is
a constant for all locations. In other words, the local Moran would then be
computed as

Ii = (z;jm2) L WijZj,
j

(12)

The moments for Ii under the null hypothesis of no spatial association can be
derived using the principles outlined by Cliff and Ord (1981, pp. 42-46) and a
reasoning similar to the one by Getis and Ord (1992, pp. 190-92). For example,
for a randomization hypothesis, the expected value turns out to be

E[Ii] = -w;j(n - 1), (13)

with Wi as the sum of the row elements, Lj Wij, and the variance is found as

Var [Ii] = Wi(2)(n - b2)/(n - 1)

+2Wi(kh)(2b2- n)/(n -l)(n - 2) - w; /(n - 1)2, (14)

with b2 = m4/m~, m4 = Li zt/n as the fourth moment, Wi(2)= L "fi W;j' and
2Wi(kh)= Lkfi Lhfi WikWih.The details of the derivation are given in A:ppendixA.

A test for significant local spatial association may be based on these moments,
although the exact distribution of such a statistic is still unknown. This is further
explored in section 5. Alternatively, a conditional randomization approach may
be taken, as outlined earlier. Given the structure of the statistic in (12), it fol-
lows that only the quantity Lj WijZjneeds to be computed for each permuta-
tion (since the zi/m2 remains constant). Note that the randomization method
applied to (12) will yield the same empirical reference distribution as when
applied to the Getis and Ord Gi and Gi statistics. Hence, inference based on
this nonparametric approach will be identical for the two statistics. This easily
follows from considering which elements in the statistics change for each
permutation of the data. For example, the Gi statistic for an observation i is
defined as
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Gi = L Wij (d) zjlL Zj,
j j

(15)

where wij(d) are the elements in a distance-based weights matrix [for details, see
Getis and Ord (1992)]. The only aspect of equation (15) that changes with each
permutation is the numerator, since the denominator does not depend on the spa-
tial allocation of observations. Clearly, this is the same term as the varying part of
the numerator in (12). In other words, the pseudo significance levels (that is, the

inference) generated with a permutation afProach applied to the Ii statistic will
be identical to that for a Gi or G; statistic.

The interpretation of the local Moran as an indicator of local instability fol-
lows easily from the relation between local and global statistics expressed in
equation (ll). Specifically, the average of the Ii will equal the global I, up to a
factor of proportionality. Extreme contributions may thus be identified by
means of simple rules, such as the two-sigma rule, or by identifying outliers in
a box plot. Note that this notion of extremeness does not imply that the corre-
sponding Ii are significant in the sense outlined earlier, but only indicates the
importance of observation i in determining the global statistic. This similarity
to the identification of outliers, leverage and influence points in the Moran
scatterplot (Anselin 1993a) will be further examined in the empirical illustration.

Local Geary

Using the same principles as before, a local Geary statistic for each observa-
tion i may be defined as

r, - '"'" w.. (z . - z. )
2

",,- W 'J , J'
j

(16)

or as

c; = (11m2) L Wij (Zi - Zj)2,
j

(17)

using the same notation as before. Using expression (17) (without loss of general-
ity), the summation of the Ciover all observations yields

L Ci=n
[
L L Wij(Zi-Zj)2/Lz7

]

.
, 'J ,

(18)

In comparison, Geary's familiar C statistic is

C = [(n - 1)/280]
[
L L Wij (Zi - Zj)2I L Z;

]

'

, J ,
(19)

Thus, the factor of proportionality between the sum of the local and the global
Geary statistic is, in the notation of (3),

,= 2n80/(n - 1). (20)

Clearly, for row-standardized weights, since 80 = n, this factor becomes

5See also Ord and Getis (1994) for a discussion of the relationship between their statistics and
Moran's I.

Case: 3:15-cv-00421-jdp   Document #: 72-5   Filed: 01/26/16   Page 8 of 23



Luc Anselin / 101

2n2/(n - 1). The Ci statistic is interpreted in the same way as the local Gamma
and the local Moran.

4. ILLUSTRATION: SPATIAL PATTERNS OF CONFLICT IN AFRICA

A geographical perspective has received much interest in recent years in the
analysis of international interactions in general, and of international conflict in
particular [see, for example, the review by Diehl (1992)]. Measures of spatial
association, such as Moran's I, have been applied to quantitative indices for
various types of conflicts and cooperation between nation-states, such as those
contained in the COPDAB data base (Azar 1980). For such indices of interna-
tional conflict and cooperation, both O'Loughlin (1986) and Kirby and Ward
(1987) found significant patterns of spatial association indicated by Moran's I.
The importance of spatial effects in the statistical analysis of conflict and coop-
eration was confirmed in a study of the interactions among forty-two African
nations, over the period 1966-78, reported in a series of papers by O'Loughlin
and Anselin (O'Loughlin and Anselin 1991, 1992; Anselin and O'Loughlin 1990,
1992). For an index of total conflict in particular, there was strong evidence of
both positive spatial autocorrelation (as indicated by Moran's I, by a r index
of spatial association, and by the estimates in a mixed regressive, spatial auto-
regressive model), as well as of spatial heterogeneity in the form of two dis-
tinct spatial regimes (as indicated by Getis-Ord GT statistics and the results of
a spatial Chow test on the stability of regression coefficients). This phenome-
non is thus particularly suited to illustrate the LISA statistics suggested in this
paper. The illustration focuses on the two interpretations of the LISA statistics,
as indicators of local spatial clusters and as diagnostics for local instability. It is
approached from the perspective of exploratory spatial data analysis and the
substantive interpretation of the models is not considered here [see O'Lough-
tin and Anselin (1992) for a more extensive discussion].

The spatial pattern of the index for total conflict is illustrated in the quartile
map in Figure 1, with the darkest shade corresponding to the highest quartile
[for details on the data sources, see Anselin and O'Loughlin (1992)]. The sug-
gestion of spatial clustering of similar values that follows from a visual inspec-
tion of this map is confirmed by a strong positive and significant Moran's I of
0.417, with an associated standard normal z-value of 4.35 (p < 0.001), and a
Geary c index of 0.584, with associated standard normal z-value of -2.90
(p < 0.002).6 These statistics are computed for a row-standardized spatial weights
matrix based on first-order contiguity (common border), given the importance
of borders in the study of international conflict (Diehl 1992).

Identification of Local Spatial Clusters

I first focus on a comparison of the identification of local spatial clusters
provided by the Getis-Ord GT statistic (as a standardized z-value) and the local
Moran Ii indicator presented in equation (12). Note that the former, while
being a statistic for local spatial association, is not a LISA in the terminology
of section 2, since its individual components are not related to a global statistic
of spatial association. This requirement is not needed for the identification of
significant local spatial clusters, but it is important for the second interpreta-
tion of a LISA, as a diagnostic of local instability in measures of global spatial

6 Allcomputationswere carried out with the SpaceStat softwarefor spatialdata analysis(Anselin
1992); the map was created with the Idrisi software (Eastman 1992), using the SpaceStat-Idrisi in-
terface; other graphics were produced by means of the SF/us statistical software.
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FIG. 1. Total Conflict Index for African Countries (1966-78)

association (for example, in the presence of significant global association), which
is discussed in the next section.

Using the same row-standardized weights matrix as for the global measures
given earlier, the results for the indicators of local spatial association are re-
ported in the third and fifth columns of Table 1, for each of the forty-two coun-
tries in the example. The standardized z-value for Ii, computed by subtracting
the expected value (13) and dividing by the standard deviation [the square root
of (14)], is listed in the sixth column. Two indications of significance are given,
one based on an approximation by the normal distribution, Pn (in the seventh
column of Table 1) and one derived from conditional randomization, using a
sample of 10,000 permutations, Pr (in the last column of Table 1).7 As men-
tioned earlier, the pseudo significance obtained by means of a conditional
randomization procedure is identical for G: and Ii. While this may suggest
that the normal approximation shown to hold for G: (listed in column four)
and assessed in detail in Ord and Getis (1994) may be valid for the Ii statistic
as well, this has not been demonstrated. In fact, evidence from some initial
Monte Carlo experiments in section 5 seems to indicate otherwise.

Note that the two statistics measure different concepts of spatial association.
For the G: statistic, a positive value indicates a spatial clustering of high values,
and a negative value a spatial clustering of low values, while for the Ii, a positive
value indicates spatial clustering of similar values (either high or low), and neg-
ative values a clustering of dissimilar values (for example, a location with high
values surrounded by neighbors with low values), as in the interpretation of the

7More precisely, the sample consists of the original observed value of the statistic and the values
computed for 9,999 conditionally randomized data sets.
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TABLE 1

Measures of Local Spatial Association
Id Countl)' G; p Ii z(I;) Pn P,

1 Gambia -0.984 0.1626 0.375 0.428 0.3342 0.4727
2 Mali -1.699 0.0447 0.464 1.482 0.0692 0.0456
3 Senegal -1.463 0.0717 0.257 0.623 0.2667 0.0270
4 Benin -1.301 0.0966 0.194 0.484 0.3142 0.0612
5 Mauritania - 0.605 0.2726 0.097 0.269 0.3940 0.4111
6 Niger -1.049 0.1471 0.231 0.774 0.2193 0.2404
7 Ivory Coast -1.417 0.0782 0.290 0.788 0.2154 0.0611
8 Guinea -1.449 0.0737 0.183 0.519 0.3020 0.0365
9 Burkina Faso -1.751 0.0400 0.508 1.479 0.0695 0.0339

10 Liberia -1.041 0.1490 0.186 0.398 0.3452 0.1333
11 Sierra Leone -0.870 0.1921 0.265 0.444 0.3286 0.4006
12 Ghana -1.103 0.1351 0.148 0.326 0.3721 0.0885
13 Togo -0.991 0.1610 0.219 0.462 0.3219 0.1894
14 Cameroon -1.133 0.1285 0.259 0.711 0.2387 0.1706
15 Nigeria -1.173 0.1205 0.114 0.306 0.3798 0.0851
16 Gabon -0.789 0.2150 0.204 0.349 0.3634 0.3139
17 CAR 1.174 0.1203 -0.442 -1.046 0.1477 0.0613
18 Chad 0.463 0.3218 -0.105 -0.225 0.4111 0.2125
19 Congo -0.203 0.4198 0.011 0.079 0.4684 0.4734
20 Zaire 2.023 0.0216 0.710 2.591 0.0048 0.0404
21 Angola 1.235 0.1085 0.118 0.270 0.3936 0.0999
22 Uganda 3.336 0.0004 1.943 4.928 0.0000 0.0031
23 Kenya 3.503 0.0002 1.197 3.060 0.0011 0.0016
24 Tanzania 1.098 0.1360 0.272 0.973 0.1652 0.1898
25 Burundi 0.774 0.2194 -0.484 -0.872 0.1915 0.1040
26 Rwanda 1.457 0.0725 -0.752 -1.613 0.0534 0.0285
27 Somalia 1.183 0.1184 0.453 0.731 0.2324 0.1266
28 Ethiopia 2.627 0.0043 0.725 1.422 0.0775 0.0090
29 Zambia 0.753 0.2258 0.042 0.219 0.4134 0.1934
30 Zimbabwe -0.200 0.4209 -0.010 0.033 0.4868 0.4041
31 Malawi 0.212 0.4161 -0.229 -0.388 0.3490 0.2088
32 Mozambique -0.288 0.3868 0.017 0.114 0.4545 0.4728
33 South Africa -0.868 0.1927 -0.183 -0.480 0.3156 0.1435
34 Lesotho -0.298 0.3827 -0.419 -0.423 0.3361 0.2341
35 Botswana 0.041 0.4837 - 0.004 0.039 0.4845 0.3691
36 Swaziland -0.659 0.2548 0.017 0.063 0.4749 0.4128
37 Morocco 0.022 0.4913 - 0.097 -0.111 0.4557 0.4995
38 Algeria - 0.363 0.3583 -0.010 0.040 0.4841 0.4139
39 Tunesia 0.579 0.2813 0.005 0.046 0.4818 0.1804
40 Libya 2.553 0.0053 0.804 2.300 0.0107 0.0133
41 Sudan 4.039 0.0000 2.988 9.898 0.0000 0.0003
42 Egypt 4.421 0.0000 6.947 10.679 0.0000 0.0058

global Moran's I. This explains the sign differences between the values in the
third and fifth columns of Table 1 (for example, for the first sixteen countries
in the table). Following the suggestion by Ord and Getis (1994), a Bonferroni
bounds procedure is used to assess significance. With an overall a level of
0.05, the individual significance levels for each observation should be taken as
0.05/42, or 0.0012.8 Given this conservative procedure, the normal approxima-
tion for both the Gi and the Ii show the same four countries to exhibit local

8For Q = 0.10, the correspondingindividualsignificancelevel is 0.0024. Since normalitywas not
demonstrated, the original Bonferroni bounds were used, rather than the slightly sharper Sid:ik pro-
cedure suggested in Ord and Getis (1994). This does not affect the interpretation of the results in
Table 1, since the difference between the two only appears at the fifth significant digit. For example,
for Q = 0.05, the Bonferroni bound is 0.001190, while the Sidak bounds are 0.001221.
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FIG. 2. Density of Randomized Local Moran for Uganda (i = 22)

spatial clustering (with the significance levels in bold type in Table 1). They are
Uganda (22), Kenya (23), Sudan (41), and Egypt (42), which themselves form a
cluster in the northeast of Africa, part of the so-called Shatterbelt.9 This spatial
clustering (or spatial autocorrelation) of both the a; and the LISA statistics is a
result of the way they are constructed, and should be kept in mind when visu-
ally interpreting a map of LISAs (or an.

The conditional randomization approach provides a still more conservative
picture of (pseudo) significant local spatial clustering, with only Sudan meeting
the Bonferroni bound for an overall a = 0.05. For this country, two out of the
9,999 statistics computed from the randomized samples exceed the observed
one, clearly labeling the latter as "extreme."l0 Of the other three previously
significant countries, only Kenya comes close to the threshold (with a pseudo
significance of 0.0016), but both Uganda (0.0031) and Egypt (0.0058) fall short
of even the bounds for an overall a = 0.10.

Some insight into the reasons for the differences in interpretation between
the normal approximation and the randomization strategy can be gained from
Figure 2, which shows the empirical distribution of the Ii for the 10,000 sam-
ples used in the computation of the pseudo significance for Uganda (22). This
country was chosen since it has different significance indications between the
two criteria, and it is not a boundary or comer location (it has five neighbors,
which is about average for the sample). The density function in Figure 2 is
smoothed, using a smoothing parameter of twice the interquartile distance.
The sample average and the observed value are indicated on the figure (the
latter with the label "i = 22"). The density under the curve for values larger
than 1.943 (the observed value) is 0.0031, indicating its extremeness (but not
significance according to the Bonferroni criterion). The distribution is clearly
non-normal, and heavily skewed to the right (skewness is 0.7997). Its average
of -0.0904 is smaller than the expected value under the null hypothesis for
observation 22, which is -0.0244. In addition, its standard deviation of 0.6340
is more than 1.5 times the value that would be expected under the theoretical
null distribution, or 0.3991 [the square root of expression (14)].

9The identification numbers in parentheses correspond to the labels in the Moran scatterplot of
Figure 3.

laThe Bonferroni bound for an overall significance level of a = 0.01 would be 0.0002.
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The differences between the empirical density in Figure 2 and (i) the theoret-
ical moment and (ii) an approximation of the null distribution by a normal raise
two important issues. First, the normal may not be an appropriate approxima-
tion, and higher order moments may have to be used, as in the approximation
to the global r statistics in Costanzo, Hubert, and Colledge (1983). However, it
may also be that the sample size and/or the number of neighbors in this exam-
ple (respectively, forty-two and five) are too small for a valid approximation by
the normal.ll Secondly, and more importantly, the moments under the null
hypothesis are derived assuming that each value is equally likely at any loca-
tion, which is inappropriate in the presence of global spatial association. In
other words, the theoretical moments in (13) and (14) do not reflect the latter.
This is appropriate when the objective is to detect local spatial clusters in the
absence of global spatial association [for example, as was the stated goal in Ce-
tis and Ord (1992)], but is not correct when global spatial association is present
(as is the case in the example considered here). While the z-values for both G1
and Ii would suffer from this problem, the conditional randomization strategy
does not, since it treats the observations as if they were spatially uncorrelated.
This issue is revisited in section 5.

Indication of Local Instability

The second interpretation of a LISA is as a diagnostic for outliers with re-
spect to a measure of global association, in this example Moran's I. The Ii stat-
istics are compared to the insights provided by the Moran scatterplot, suggested
by Anselin (1993a) as a device to achieve a similar objective, that is, to visualize
local instability in spatial autocorrelation. Note that the Moran scatterplot is
not a LISA in the sense of this paper, since no indication of significant local
spatial clustering is obtained. The principle behind the interpretation of the
Moran scatterplot is that many statistics for global association are of the form
x/Ax/x/x, where x is a vector of observations (in deviations from the mean)
and A is a matrix of known elements. In the case of Moran's I, the A is the
row-standardized spatial weights matrix W. Civen this form for the statistic,
it may be visualized as the slope of a linear regression of Wx on x [see also
Anselin (1980) for the interpretation of Moran's I as a regression coefficient].
A scatterplot of Wx on x [similar to a spatial lag scatterplot in geostatistics, for
example, as in Cressie (1991)], with the linear regression line superimposed,
provides insight into the extent to which individual (WXi, Xi) pairs influence
the global measure, exert leverage, or may be interpreted as outliers, based on
the extensive set of standard regression diagnostics (for example, Cook 1977;
Hoaglin and Welsch 1978; Belsley, Kuh, and Welsch 1980).

The Moran scatterplot for the African conflict data is given as Figure 3, with
the individual countries labeled as in Table 1. The (WXi, Xi) pairs are given for
standardized values, so that "outliers" may be easily visualized as points further
than two units away from the origin. In Figure 3, both Sudan (41) and Egypt
(42) have values for total conflict that are more than two standard deviations
higher than the mean (on the horizontal axis of Figure 3), while Egypt also has
values for the spatial lag that are twice the mean (vertical axis of Figure 3). The
use of standardized values also allows the Moran scatterplots for different vari-
ables to be comparable. The four quadrants in Figure 3 correspond to the four
types of spatial association. The lower left and upper right quadrants indicate
spatial clustering of similar values: low values (that is, less than the mean) in

11See Getis and Ord (1992, pp. 191-92) for the importance of both sample size and the number
of neighbors for the normal approximation of the Gi and Gi statistics.
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FIG. 3. Moran Scatterplot for Total Conflict (I = 0.417)

the lower left and high values in the upper right. Stated differently, the lower
left pairs would correspond to negative values of the Gi and G;, and the upper
right pairs to positive values. With the Ii statistics, no distinction is possible
between the two forms of association since both result in a positive sign. The
upper left and lower right quadrants of Figure 3 indicate spatial association of
dissimilar values: low values surrounded by high neighboring values for the
former, and high values surrounded by low values for the latter. These corre-
spond to Ii statistics with a negative sign. Since they are not cross-product
statistics, the Gi and G; statistics do not capture this form of spatial association.

While the overall pattern of spatial association is clearly positive, as indicated
by the slope of the regression line (Moran's 1), eleven observations show asso-
ciation between dissimilar values: eight in the upper left quadrant, also shown
as light islands within the darkest clusters of Figure 1; and three in the lower
right quadrant (Algeria, 38, Morocco, 37, and South Africa, 33), surrounded by
countries in the first and second quartile in Figure 1. This may indicate the
existence of different regimes of spatial association.

The application of regression diagnostics for leverage to the scatterplot sug-
gests that two observations deserve closer scrutiny. The highly significant local
spatial associationfor Sudan (41) and Egypt (42) finds a match with the indica-
tion of leverage provided by the diagonal elements of the hat matrix. These are
respectively 0.247 (for Sudan) and 0.316 (for Egypt), both distinctly larger than
the usual cutoff of 2k/n (where k is the number of explanatory variables in the
regression, or 2 in this example), or 0.095.12 The third largest hat value of 0.085

I2The diagonal elements of the hat matrix H '" X(X' Xr1 X', with X as the matrix of observations
on the explanatory variables in a regression, are well known indicators of leverage. See, for example,
Hoaglin and Welsch (1978).
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FIG. 4. Local Moran Outliers

for Uganda, 22, does not exceed this threshold. One may be tempted to con-
clude that the elimination of Egypt and Sudan from the sample would void the
indication of spatial association, but this is not the case. Without both countries,
Moran's I drops to 0.254, but its associated z-value is 2.53 (using the randomiza-
tion null hypothesis), which is still highly significant at p < 0.006.

The distribution of Ii statistics for the sample can similarly be exploited to
provide an indication of outliers or leverage points. In Figure 4, this is illu-
strated by means of a simple two-sigma rule. The mean of the distribution of
the Ii is Moran's I, or 0.417, and twice the standard deviation from the mean
corresponds to the value of 2.798. Clearly, this is exceeded by both Sudan
(41), with a value of 2.988 for h and by Egypt (42), with a value of 6.947.
While this is obviously not a test in a strict sense, it provides useful insight
into the special nature of these two observations. All four indicators are in
agreement in this respect, that is, the G; and Ii as measures of local spatial
clusters, and the Moran scatterplot and Ii as indicators of outliers. The substan-
tive interpretation of the special nature of these observations is beyond the
scope of the exploratory data analysis. The role of the latter is to point them
out and by doing so to aid in the suggestion of possible explanations or hypoth-
eses. Alternatively, the indication of "strange" observations may point to data
quality problems, such as coding mistakes, or, in the case of spatial analysis,
problems with the choice of the spatial weights matrix.

5. MONTE CARLOEVIDENCE: GLOBALAND LOCAL SPATIALASSOCIATION

Two issues raised by the results of the empirical illustration in the previous
section are revisited here by means of some initial Monte Carlo experiments.
The first pertains to the distribution of the local Moran Ii statistic under the
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null hypothesis of no (global) spatial autocorrelation. The second issue is the
distribution of the local statistic when global spatial autocorrelation is present,
and its implication for the assessment of significance. This may also have rele-
vance for the distribution of the Gi and G? statistics in this situation, since their
distribution under the null is also based on the absence of global association. As
pointed out earlier, it is quite common to study local association in the presence
of global association, for example, this is the case in the illustration presented in
the previous section. This second issue also has relevance for the assessment of
outliers or local instability, that is, the second interpretation of the local Moran.
It is well known that many spatial processes that produce spatially autocorre-
lated patterns also generate spatial heterogeneity. For example, this is the case
for the familiar spatial autoregressive process (Anselin 1990). The spatial hetero-
geneity indicated by LISAs, based on a null hypothesis of no spatial association
may therefore be a natural characteristic of the spatial process, and not an indica-
tion of local pockets of nonstationarity.

Two sets of experiments were carried out, one based on the same spatial
weights matrix as for the African example (with n = 42), the other on the weights
matrix for a 9 by 9 regular grid, using the queen notion of contiguity (with
n = 81). Both weights matrices were used in row-standardized form. For each
of these configurations, 10,000 random samples were generated with increas-
ing degrees of spatial autocorrelation, constructed by means of a simple spatial
autoregressive transformation. More formally, given a vector c: of randomly
generated standard normal variates, a spatially autocorrelated landscape was
generated as a vector y:

y = (I - pW)-lc:, (21)

where p is the autoregressive parameter, taking values of 0.0, 0.3, 0.6, and 0.9,
and 1 is a n by n identity matrix. While the resulting samples will be spatially
autocorrelated for nonzero values of p, there is no one-to-one match between
the value of p and the global Moran's I. As is well known, the latter is capable of
detecting many different forms of spatial association, and is not linked to a specific
spatial process as the sole alternative hypothesis.

Distribution of the Local Moran under the Null Hypothesis

The distribution of the standardized z-values that correspond to the Ii statis-
tic was considered in detail for two selected observations, the location corre-
sponding to Uganda, i = 22, for the African weights matrix, and the location
corresponding to the central cell, i = 41, for the regular lattice. Not only are
the dimensions of the data sets different in the two examples (n = 42 and
n = 81), but also the number of neighbors differ for the observations under
consideration, as they are respectively 5 and 8. The moments of each distribu-
tion for the z-values, based on the 10,000 replications, are given in the first row
of Table 2. While the mean and standard deviation are roughly in accordance
with those for a standard normal distribution, the kurtosis and to a lesser ex-
tent the skewness are not. This is further illustrated by the density graph in
Figure 5 (for n = 81), which clearly shows the leptokurtic nature of the dis-
tribution and the associated thicker tails (compared to a normal density). The
density graph for the African case is very similar and is not shown. Instead, a
quantile-quantile plot for the African example is given in Figure 6, to further
illustrate the lack of normality. While there is general agreement in the central
section of the two distributions (total agreement would be shown as a perfect
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a. z-values for local Moran; 10,000 replications, using observation 22 for n = 42 and observation 41 for n = 81.

linear fit), at the tails, that is, where it matters in terms of significance, this
clearly is not the case. A more rigorous assessment of the distribution, based
on an asymptotic chi-squared test constructed around the third and fourth
moments (Kiefer and Salmon 1983) strongly rejects the null hypothesis of nor-
mality in both cases.

This more extensive assessment confirms (in a controlled setting) the earlier
suggestion implied by the discrepancy between the significance levels under the
normal approximation and the conditional randomization in Table 1. Note that
the African example in Table 1 exhibited significant global spatial autocorrela-
tion, while the simulations here do not (by design). Further results are needed
to see whether larger sample sizes or higher numbers of neighbors are
needed before normality is obtained. However, from the initial impressions
gained here it would seem that the normal approximation may be inappropri-
ate, and that higher moments (given the values for skewness and kurtosis in
Table 2) would be needed in order to obtain a better approximation [for exam-
ple, as in Costanzo, Hubert, and Colledge (1983) for the r statistic].

The implications of these results for inference in practice are that even when
no global spatial autocorrelation is present, the significance levels indicated by a
normal approximation will result in an over-rejection of the null hypothesis for
a given O:iType I error. Clearly, a more conservative approach is warranted,
although the exact nature of the corrections to the O:iawaits further investiga-
tion. In the meantime, a conditional randomization approach provides a useful
alternative.

~
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FIG. 5. Density of z-value for Local Moran (n = 81; 10,000 Replications)

TABLE 2

Moments of Local Moran with Global Spatial Autocorrelationa

n = 42 n= 81

p Mean St.Dev. Skew Kurtosis Mean St.Dev. Skew Kurtosis

0.0 0.0032 0.9895 -0.2599 7.993 0.0236 1.0356 -0.1073 7.711
0.3 0.2491 1.0730 0.7417 7.635 0.2666 1.1733 0.9320 7.853
0.6 0.5833 1.2144 1.4748 7.454 0.6057 1.3958 1.7475 8.673
0.9 1.0782 1.3465 1.5357 5.850 0.8961 1.4690 2.4073 11.114
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Distribution of the Local Moran in the Presence of Global Spatial
Autocorrelation

The presence of global spatial autocorrelation has a strong influence on the
moments of the distribution of the local Moran, as indicated by the results in
Table 2. Both mean and standard deviation increase with spatial autocorrela-
tion, but the most significant effect seems to be on the skewness of the distribu-
tion. This is further illustrated by the box plots in Figure 7 (for the case with
n = 42; the results for the larger sample size are similar). As p increases, the
distribution becomes more and more asymmetric around the median, while
both the interquartile range and the median itself increase as well. Clearly, in
the presence of global spatial autocorrelation, the moments indicated by the
expressions (13) and (14) become inappropriate estimates of the moments of
the actual distribution. The same problem would seem to also affect the dis-
tribution for the Getis and Ord Gi and GT statistics, since they are derived in
a similar manner. Consequently, inference for tests on local spatial clusters
that ignores this effect is likely to be misleading. The magnitude of the error
cannot be derived from the initial Monte Carlo results reported here, and
further investigation is needed, both empirical and analytical. In practice, infer-
ence based on the pseudo significance levels indicated by a conditional rando-
mization approach seems to be the only viable alternative.

Evidence of Outliers in the Presence of Global Spatial Autocorrelation

A final issue to be examined is how the magnitude of global spatial autocor-
relation affects the distribution of the Ii around the sample mean (the global
Moran's I), which is used to detect outliers. In contrast to the earlier experi-
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ments, the focus is not on Ii for an individual location, but on how the spread of
the statistics in each sample is affected by the strength of global spatial autocor-
relation. In Table 3, the average over the 10,000 replications of twice the standard
deviation around the mean in each replication is listed, as well as the average
(over the 10,000 replications) number of outliers indicated by using the two
sigma rule. With increasing global spatial autocorrelation, both the spread and
the number of "outliers" increases. This implies that in the presence of a high
degree of spatial autocorrelation, several extreme values of the Ii statistic are
to be expected as a "normal" result of the heterogeneity induced by a spatial
autoregressive process. In practice, this is not much different from the usual
treatment of outliers, and without further evidence, it is not possible to state
in a rigorous manner which extreme values are to be expected and which are
unusual observations. However, as an exploratory device, the lack of symmetry
of the distribution of the Ii around the global I, and/or the presence of very
large values provides insight into the stability of the indication of global spatial
association over the sample.

TABLE 3

Two-SigmaRule with Global Spatial Autocorrelationa
n = 42 n = 81

20" Outliers

0.7538
0.8675
1.1280
1.7017

5
6
7
9

a. 20"computed as average 20"over 10,000 replications; outliers are median number of observations more than 20"from the mean in
each sample.

P 20" Outliers

0.0 1.0199 3
0.3 1.1171 3
0.6 1.3519 4
0.9 1. 7112 5
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6. CONCLUSION

The general class of local indicators of spatial association suggested in this
paper serves two main purposes. Firstly, the LISA generalize the idea underly-
ing the Getis and Ord Gi and G7 statistics to a broad class of measures of local
spatial association. Secondly, by directly linking the local indicators to a global
measure of spatial association, the decomposition of the latter into its observa-
tion-specific components becomes straightforward, thus enabling the assess-
ment of influential observations and outliers. It is this dual property that distin-
guishes the class of LISA from existing techniques, such as the Gi and G7
statistics and the Moran scatterplot. The LISA presented here are easy to im-
plement and lend themselves readily to visualization. They thus serve a useful
purpose in an exploratory analysis of spatial data, potentially indicating local
spatial clusters and forming the basis for a sensitivity analysis (outliers). While
the former is more appropriate when no global spatial autocorrelation is pre-
sent, the latter is particularly useful when there is spatial autocorrelation in
the data.

A number of issues remain to be investigated further. The illustration in this
paper primarily pertained to the local Moran Ii indices, but the extension to the
wider class of LISA statistics can be carried out in a straightforward way. From
both the empirical example and the initial simulation experiments, it follows
that the null distribution of the local Moran cannot be effectively approximated
by the normal, at least not for the small sample sizes employed here. Also, it
seems that higher moments may be necessary in order to obtain a better
approximation. Furthermore, the uncritical use of the null distribution in the
presence of global spatial autocorrelation will give incorrect significance levels.
The problem also pertains to the Gi and G7 statistics and would suggest that a
test for global spatial autocorrelation should precede the assessment of signifi-
cant local spatial clusters. However, such a two-pronged strategy raises the issue
of pretesting and multiple comparisons, and would require an adjustment of the
significance levels to reflect this. This further complicates the determination of a
proper significance level for an individual LISA, given the built-in correlatedness
of measures for adjoining locations. It is clear that some type of bounds procedure
is needed, but which degree of correction is sufficient still remains to be
addressed.

Finally, the conditional randomization approach suggested here seems to pro-
vide a reliable basis for inference for the LISA, both in the absence and in the
presence of global spatial autocorrelation.
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APPENDIX A

The moments of the local Moran statistic can be derived using the results in
Cliff and Ord (1981, pp. 42-46). Using (12), the expected value of Ii under the
randomization hypothesis is

E[Ii] = (~ Wij/m2)E[zizj].

The value of the expectations term is

E[ziZj] = -m2/(n - 1),

based on equation (2.37) of Cliff and Ord (1981, p, 45), Consequently, the
expected value of Ii becomes

E[Ii] = -w;J(n - 1),

with Wi as the sum of the row elements, Lj Wij. Obviously, in the case a row-
standardized weights matrix is used, this sum will be one.
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To obtain the second moment, the following expression must be evaluated:

Elifl ~ (l/mi)E [3. (~W'jZj) ']

or

E[I;] = (1/mDE
[
Z;

(E W;jz7 + E E WikWihZkZh )]
,

fl.i kfi hfi

for which the following results are important, based on equation (2.39) of Cliff and
Ord (1981, p. 46):

E[z;z;] = (nm~ - m4)/(n - 1);

E[z;zkzh]= (2m4 - nm~)/(n - 1) (n - 2)

with m4 = Li zj / n as the fourth moment. The first weights term in the expecta-
tion consists of the sum of all weights squared, or, Wi(2) = Lfl.l W;j' and the sec-
ond is twice the sum of the cross products (avoiding identical subscripts), Of,
2Wi(kh) = Lkfi Lhfi WikWih. After combining terms, the second moment is
found as

E[In = (1/m~) [wi(2)(nm~- m4)/(n - 1)

+2Wi(kh)(2m4 - nm~)/(n -1) (n - 2)],

which simplifies somewhat after using b2 = m4/m~, to

E[In = Wi(2)(n - b2)/(n - 1) + 2Wi(kh)(2b2- n)/(n - 1)(n - 2).

Consequently, the variance of Ii is

Var[Ii] = Wi(2)(n - b2)/(n -1) + 2Wi(kh)(2b2 - n)/(n -1)(n - 2)

Case: 3:15-cv-00421-jdp   Document #: 72-5   Filed: 01/26/16   Page 23 of 23



Contagion Effects and Ethnic Contribution Networks

Wendy K. Tam Cho University of Illinois at Urbana-Champaign

Many political behavior theories explicitly incorporate the idea that context matters in politics. Nonetheless, the concept
of spatial dependence—in particular, that behavior in geographic units is somehow related to and affected by behavior
in neighboring areas—is not extensively explored. The study of campaign finance is no exception. Research in this area
concentrates on the attributes of the individual donor, leaving context underexplored. Concepts such as contribution networks,
for instance, are not rigorously tested. This article reexamines the impact of conventional socio-demographic covariates on
campaign donation behavior by ethnic contributors and explicitly models spatial effects. The spatial analysis reveals that
patterns of campaign donations are geographically clustered (exhibiting both spatial dependence, implying a neighborhood
effect, and spatial heterogeneity, implying a regional effect), and that this clustering cannot be explained completely by socio-
economic and demographic variables. While socio-demographic characteristics are important components of the dynamic
underlying campaign contributions, there is also evidence consistent with a contagion effect whereby ethnic contribution
networks are fueling funds to candidate coffers.

Context matters in politics. Politics, after all, is not
a set of unrelated individual actions, but is in-
stead an interrelated set of social phenomena. A

corollary of this claim is that people are influenced by the
context in which they find themselves. Indeed, it is not
hard to imagine a plethora of circumstances under which
colleagues and neighbors would be influential in the for-
mation and solidification of political beliefs or would be
the impetus behind the emergence of some type of po-
litical action. Although people can and do maintain rela-
tionships that span large distances, it is clear that one of
the great sources of enduring and influential interactions
is physical proximity. Despite easily-formed theories for
spatial effects, the concept of “space”—in particular, that
the behavior of people is somehow related to and affected
by the behavior of those who reside in close proximity—
has received too little attention in political science. The
lack of inquiry seems especially strange since many classes
of theories in political behavior focus on context and
geography. Indeed, this discussion and these theories
have spanned and evolved over many decades (Key 1949;
Berelson, Lazarsfeld, and McPhee 1954; Putnam 1966;
Huckfeldt 1979; Eulau 1986; Huckfeldt and Sprague 1987;
1992; Putnam 2000).
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There is a line of research that has focused on various
spatial dimensions, social networks, and neighborhood
effects. For example, Putnam (1966), Huckfeldt, Plutzer,
and Sprague (1993), Huckfeldt (1979) have conducted
many studies on social interaction. Weatherford (1982)
and Crenson (1978) have focused on the idea of social net-
works. The role of geography is clear in Baybeck (2001),
Tir and Diehl (2002), and Baybeck and Huckfeldt (2002).
As well, the policy diffusion literature has looked closely
at the idea of how policy innovations adopted in one
state may spread to neighboring states (see, e.g., Walker
1969; Gray 1973; Berry and Berry 1992). Finally, Johnston
et al. (1997, 1998, 2000, 2001) have, on many occasions,
examined the role of spatial context in British elections.
All of these works emphasize the role of spatial context
and the role of simple geography, though in a manner
that is somewhat different than the methods employed
here.

This article takes advantage of recent and significant
advances in geographic information systems (GIS) and
the proliferation of research methodologies and tools for
spatial analysis. The confluence of these two factors has
created conditions that are ripe for spatial analyses of po-
litical data, allowing us to broaden our examination and
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conceptualization of the spatial realm in politics, and to
do so in a more systematic and expansive manner. There
have been some significant studies utilizing these spatial
methodologies in relating political phenomena to geog-
raphy, especially in the field of conflict studies (see, e.g.,
Kirby and Ward (1987), Starr (2001), and O’Loughlin
(1987). Most and Starr (1980, 1982, 1983, 1984) and
Starr and Most (1976, 1978, 1983), in particular, have
conducted a number of studies along these dimensions).
There have also been some studies in American politics
(see, e.g., Gimpel 1999; Rom, Peterson, and Scheve 1998;
Saavedra 1998; Sui and Hugill 2002; Kohfeld and Sprague
2002; and Darmofal 2002) as well as comparative politics
(see, e.g., Agnew 1987; Brustein 1990; O’Loughlin, Flint,
and Anselin 1994; Shin 2001; O’Loughlin 2002; and Shin
and Agnew 2002). This piece joins these articles in incor-
porating and emphasizing the role of geography and con-
text by utilizing spatial econometric techniques to explain
political phenomena, with a focus on individual political
behavior and American politics.

Another important component behind the increasing
ability to examine spatial phenomena is the growing avail-
ability of geo-coded data. The primary advantage that ac-
crues from analyzing the spatial dimension is that we can
move away from theories that incorporate only individ-
ual decision-making, whether across time or in a singular
incident, in an isolated realm. That is, the individual need
no longer be seen as an atomistic actor. Instead, we can
consider theoretical frameworks that place the individ-
ual’s actions in the context of his “neighborhood,” where
behavior can be compared to and observed in relation to
the behavior of others in close proximity.

Perhaps not surprisingly, spatial analyses are impor-
tant for both substantive as well as statistical reasons, and
these two dimensions are inextricably linked in this con-
text. On the substantive front, spatial models allow us to
examine critically theories about the political behavior of
individuals in the proper context. Aspatial models omit
this spatial component and thus allow one to examine the
individual primarily as an atomistic actor only. Statisti-
cally, if spatial processes underlie the behavior of interest
but are not accounted for in the model, inferences will
be inaccurate and coefficient estimates may be biased. Er-
roneously ignoring spatial dependence (in the form of a
spatial lag) may create bias and inconsistency in the same
way that we understand the omitted variable problem to
affect OLS estimates (Anselin 1988, 1990). Alternatively,
when the spatial error structure is ignored, simple ineffi-
ciency is apparent in the estimates but the standard errors
are biased (Anselin and Griffith 1988). Hence, even if one
were not interested specifically in the spatial effect but
only in the aspatial effects, omitting the possibility of a

spatial aspect from the model may affect the interpreta-
tion of the results, spatial and otherwise.

Given that many spatial theories have been proposed
(but not tested or tested in limited settings only), the in-
creasing availability of geo-coded data, and the statistical
issues that arise, rigorous testing of spatial effects is a
natural next step. This article examines spatial effects in
the context of campaign contributions. I begin by posit-
ing why this form of political behavior may be partic-
ularly susceptible to spatial effects. Next, I describe the
data gathering and merging process. The contributions
data are from the Federal Election Commission (FEC).
These data are merged to U.S. Census zip code data. I
then present spatial models of campaign donations for 10
separate years. Finally, I conclude by discussing the impact
of spatial as well as some aspatial effects, such as time and
demographics, on the campaign contribution dynamic.

Spatial and Aspatial Theories
of Campaign Donations

Although the idea that the patterns behind campaign con-
tributions have a spatial component has scarcely been
tested empirically, the reasoning behind why contribu-
tions would exhibit a spatial pattern is not lacking. Some
of these reasons are spatial (i.e., attributable to geogra-
phy), while others are aspatial (i.e., attributable to non-
geographic components such as income). For instance,
one reason why campaign donations would exhibit a spa-
tial pattern is that campaigns are strategic but have lim-
ited resources, and so attempt to allocate these resources
wisely. This may mean that a candidate will focus on
specific media markets, bombarding the campaign bat-
tlegrounds while leaving air time in another part of the
country relatively barren. Because this courting is geo-
graphically definable, donations may appear to be rolling
in in geographic clusters rather than emerging as random,
independent events across the United States.

As well, candidates may appeal to specific electoral
groups. For instance, it is well known that minority groups
(especially blacks and Latinos) tend to favor Democratic
candidates. To the extent that these ethnic groups are seg-
regated, whether voluntarily or not, geographic clustering
of behavior may again appear. Similarly, Asian Americans
tend to reside in clusters. If a candidate is especially attrac-
tive to or adept at courting minorities, his set of campaign
donations will appear to have some spatial structure, even
though the mechanism creating that structure is not a
spatial process per se, but is, rather, connected to the dis-
persion of the minority population.
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Alternatively, simple proximity to others exhibiting
a certain type of behavior may also be a factor. Social
networks may develop in response to “mobilization” so
that active solicitation of donations by a candidate has
spillover effects via the formation of networks (Putnam
2000; Weatherford 1982). Campbell et al. (1960) iden-
tify two factors, community identification and perceived
community standards, that serve as the basis for an expla-
nation of community influence. An idea behind this liter-
ature is that the initial impetus may be an individual action
or a neighborhood fundraiser that then, through social in-
teraction, diffuses to neighboring areas and emerges as a
spatial pattern.

Lastly, since money is involved in campaign dona-
tions and financial donations are not obligatory, income
level always emerges as an obvious explanatory variable.
Indeed, research on the origins of campaign donations
often focus on socioeconomic factors such as age, edu-
cation, and income. Verba, Schlozman, and Brady (1995)
single out income as “overwhelmingly, the dominant fac-
tor” in political contributions. According to their analy-
sis, “[e]ducation, vocabulary, and civic skills play no role”
(1995, 361). Gierzynski (2000) concurs, stating that “a
look at individual contributors reveals a disproportionate
representation of those of higher socioeconomic status”
(107). The Brown, Powell, and Wilcox study found that
contributors “are generally white, male, well-educated, af-
fluent, and active in contributing at several levels of gov-
ernment” (1995, 49). Rosenstone and Hansen find that
education is the most crucial resource in defining partic-
ipation levels in various political acts with one exception,
“[i]ncome—not education—is the most crucial resource
for donations of money to political campaigns” (1993,
136).

Socioeconomic variables, especially income, are,
then, our chief candidates for aspatial explanatory vari-
ables that might be producing the spatial patterning that
we observe. Certainly, education and income levels are
found in clusters throughout the U.S. Whether the socio-
demographic variables are the sources of spatial pattern-
ing or if the patterns can be attributed to a more pure
spatial process (such as a neighborhood effect) will be the
focus of the modeling to follow, but it should be clear that
there are many reasons why the campaign finance data
may be spatially clustered.

In short, there are many theories behind the dynamic
of campaign contributions, both with spatial and aspatial
roots that would result in clear spatial patterning. Notably,
spatial explanations do not take away from the aspatial
findings that have been proposed previously, since both
sets of findings can be true simultaneously. There can
be a spatial component that complements the nonspatial

components. Alternatively, we may find that the spatial
explanations comprise a greater proportion of the over-
all explanation than we had previously thought, i.e., the
nonspatial components become less significant or even
disappear when viewed in light of the spatial components.
In the past, the nonspatial theories have received more at-
tention but not necessarily rightly or justifiably so. The
bias results more from a paucity of research in the spatial
realm than from a lack of theories.

The immediate goal here is to gain insight into how
and why contribution patterns appear as they do across
the country. Is there some type of spatial or time-related
pattern to the data or are these levels of political behavior
solely attributable to decision making that occurs out-
side simple geography. If the decision-making process is
mostly a function of individual traits, then in a unit-level
analysis of donation levels, covariates such as partisan-
ship or income levels might be significant predictors, but
the spatial parameters should not be significant in the
model specifications that control for these covariates. On
the other hand, if the contribution dynamic is primarily
a diffusion process, driven by network or neighborhood
effects, then the spatial lag will be significant, while the
socioeconomic indicators will not be significant.

It may also be the case that the patterns can be ex-
plained by elite political mobilization, driven perhaps by
candidate appearances. Since this analysis does not in-
corporate a variable such as candidate appearances, if the
spatial patterning were the result of this unmeasured vari-
able, the spatial error model would be a relevant spatial
specification, and the fit of the spatial error model or
evidence of remaining spatial error dependence should
provide evidence for or against a mobilization theory. Al-
ternatively, and perhaps most likely, the effect may be a
combination of the (measured and unmeasured) spatial
and aspatial sets of variables. So, there may be “neigh-
borhood effects” as well as effects that are more directly
and narrowly connected to individual characteristics and
elite tactics. It is important to note here that the specific
mechanism that produces the spatial patterns is unknown
and not determinable via the spatial analyses that are em-
ployed here. What we can uncover are patterns that are
consistent with the specific mechanisms that produce the
contribution patterns that we observe.

The focus of this study is on ethnic contribution
networks, specifically, Asian American contribution net-
works. Akin to the literature on campaign finance behav-
ior, little is known about ethnic contribution networks.
In the minority realm, as in the nonminority realm, re-
search has focused on individual-level decision making.
For Asian Americans, the impetus behind the contribu-
tion dynamic also has roots in socioeconomic factors. One
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large difference is the importance of ethnic cues and eth-
nic candidates (Cho 2001, 2002). These factors are, again,
based on individual traits, not on social context or con-
tribution networks. In this sense, the research presented
here complements and augments the vast literature that
has amassed on political behavior and minority political
behavior. Individual effects are considered, but alongside
the context in which individuals find themselves.

Data Analysis

The data for this project are from the FEC (1980–1998).
The database includes contributions to candidates for
federal office as well as PACs and party organizations.
The specific data for this article include a subset of these
data: all contributions from Asian American donors.1 The
Asian American group is perhaps the only group that can
be reasonably identified solely by name and so the only
group that can be extracted reliably from the FEC data.2

Since this smaller data set is still quite large (over 65,000
observations), there is not much lost in asymptotics.3

An important feature of the FEC data is that they are
objective whereas surveys rely on self-reported accounts,
which may limit the generalizability of the analysis.4 There
are two main drawbacks to the course taken here. First,
the analysis is conducted at the level of a geographic unit
rather than at the individual level. This does not take away
from the spatial component and the ability to evaluate
spatial effects, but only the inferences that we can gather
about individuals. Second, because the FEC data are not
rich in variables as surveys often are, we can observe and

1The full collection of FEC individual contribution reports (1980–
1998) is very large, approximately 6 million records. The database
was parsed using Asian name dictionaries (both first and last
names).

2Since the FEC do not include any demographic variables, it is
difficult to place many identifying characteristics on the individual
donors. While it would be extremely interesting to contrast these
findings on Asian Americans with whites, or blacks, or Latinos,
such an analysis is not feasible with the FEC data, as none of these
three groups can be reliably identified in the data.

3This smaller data set makes this problem manageable. Analyzing
the entire FEC data set is not feasible at this point because of com-
puting limitations associated with the massive size of the entire
data set and the computational intensive nature of spatial analyses
(Smirnov and Anselin 2001).

4Surveys, often the best sources of individual-level data, are of lim-
ited usefulness here, since they conflict markedly in their accounts
of campaign contribution levels (Cho 2002). Another major draw-
back of surveys for the current task is that geographic identifiers
are rarely available.

model the spatial patterning of contributions, but an ex-
tensive study of contributor motives is not possible.

To perform a spatial analysis, one needs data units that
are geographic. Accordingly, the unit of aggregation here
is the zip code, and all of the FEC data have been aggre-
gated to the zip code level. The zip code level was chosen
because the it is the lowest level of aggregation for which
we can obtain data from both the Census and the FEC.5 In
this analysis, the dependent variable is the amount in con-
tributions received from Asian ethnic groups (Chinese,
Japanese, Korean, and Vietnamese).6 The independent
variables are from the U.S. Census (Census STF3b file),
and have been merged to the FEC data. The independent
variables include several measures of socioeconomic sta-
tus, including income, education, and age. The income
variable is the median income in the zip code, measured
in $10,000s. The education variable is a 7-category vari-
able that measures the mean educational attainment. The
age variable is a 5-category variable that measures the
mean age in the zip code. Also available from the census is
total population in a zip code7 and the percentage of the
zip code that various groups (such as Asian Americans,
blacks, and Latinos) comprise.

Indicators of Spatial Autocorrelation

The first step in a spatial analysis is to determine whether
there is any spatial autocorrelation in the data at all.

5The observations are not individual contributors. While zip codes
for individuals are also available, the number of observations is
a limiting factor. The greater problem, however, is that the FEC
provides no demographic variables for individuals. The census,
on the other hand, collects a large number of variables at the zip
code level. Thus, the zip code level is an appropriate aggregation
level because it is the lowest level of aggregation for which there is
extensive data available for estimating the models and theories of
interest.

6The pan-ethnic identity is certainly one of great contention
(Espiritu 1992; Tam 1995), and so the use of the umbrella cate-
gory always needs to be broached with caution. Many have argued
that the pan-ethnic group rises to the occasion in contexts where
they are treated by others as a homogeneous group (Espiritu 1992;
Lien 2001). In these instances, they join together to fight a com-
mon cause or misconception where they have a joint stake. The
case of campaign donations and the 1996 campaign finance scan-
dal surrounding Asian donations is certainly a case in point, and
so the use of a pan-ethnic category here is justifiable. To the extent
that the pan-ethnic identity is not appropriate, the results that fol-
low are conservative estimates of the possible diffusion processes
at play. These processes are likely to be even stronger if we were to
examine just one ethnic group as diffusion effects are more likely
within a single ethnic group rather than across the often internally
heterogeneous Asian American group.

7Total population is available, but to ensure some consistency in the
range of variables, the population variable in the spatial models is
population in 1000s of people.
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Accordingly, we want to test the null hypothesis of spatial
randomness against the alternative hypothesis of spatial
autocorrelation. Spatial autocorrelation occurs when val-
ues of a certain variable are systematically related to their
geographic locations. That is, there is some relationship
between the levels of donations in neighboring area. Ev-
idence of such a relationship would support the spatial
theories. If the spatial autocorrelation statistic is statis-
tically significant, however, further analysis needs to be
conducted to determine the source of the autocorrela-
tion. The Moran’s I statistic (Moran 1948; Cliff and Ord
1973) is the most commonly employed method of assess-
ing the significance and/or degree of spatial autocorre-
lation in the data (Cliff and Ord 1981). A positive and
significant Moran’s I indicates spatial clustering of con-
tribution amounts. Specifically, the Moran’s I statistic is

I =
∑

i

∑
j wij(yi − �)(y j − �)
∑

i (yi − �)2
,

where wij is an element of a row-standardized spatial
weights matrix, y is the contribution amount, and � is the
average contribution amount in the sample. The Moran’s
I statistic can be thought of as a counterpart to the familiar
Durbin-Watson statistic used to detect autocorrelation in
time-series data. Spatial autocorrelation occurs when the
similarity of values of interest is related to the locations
of the units, i.e.

Cov(yi , y j ) = E (yi y j ) − E (yi )E (y j ) �= 0, ∀ i �= j.

If spatial autocorrelation is present in the data, models
that do not explicitly account for spatial effects are in-
adequate for adjudicating between spatial and nonspatial
theories. If spatial randomness is rejected, the next re-
course is to explore the processes that may have generated
the observed spatial patterns.

We can see from Table 1 that the global Moran’s I
statistic is highly significant for every year of the FEC
data.8 However, note that even if the pattern seems to be

8The weights matrix is based on an inverse distance measure where
the distance band is 50 miles. That is, the spatial lag for each zip
code can be seen as the weighted average (with the wij being the
weights) of its geographically-defined neighbors (those zip codes
that fall within the distance band). The distance is measured from
the centroid. Different weights matrices (but the same specification,
as described above) are computed for each year, so the connectivity
structure differs from year to year, where the change is dependent
on the specific contributions in that year. In the 1998 data, the
minimum number of neighbors is 0. Fifty-one observations have
no neighbors. The maximum number of neighbors is 253. Only
one observation has this many neighbors. The average number of
neighbors is 86. The specification of the weights matrix is important
in any spatial analysis. Accordingly, here, different specifications for
the weights matrix were examined. For instance, a distance band of
100 miles was also employed. The results were basically identical to
those that resulted from using the 50-mile band. K-nearest neighbor

TABLE 1 Global Moran’s I Statistic

Year Moran’s I Z-value p-value

1980 0.2845 21.79 0.00
1982 0.1398 8.35 0.00
1984 0.1981 14.39 0.00
1986 0.0411 3.49 0.00
1988 0.1739 24.06 0.00
1990 0.3749 50.98 0.00
1992 0.2599 50.10 0.00
1994 0.2196 35.28 0.00
1996 0.1795 35.51 0.00
1998 0.2612 47.27 0.00

spatially clustered, the pattern of contributions may, in
fact, be spatially random, driven simply from clustering
of demographic traits such as income. So far, we have only
observed spatial patterns. We cannot yet make any claims
about why these patterns occur, because we have not con-
ducted any analysis of this type. We have simply surmised
that the pattern of contributions, without controlling for
any variables, is not random.9 We will explore the source
of the spatial dependence in the spatial regression models
to follow.

We can obtain a more detailed look at spatial auto-
correlation by examining the local indicators of spatial
autocorrelation (LISA) statistics (Anselin 1995). This lo-
cal Moran statistic is closely related to the global Moran’s
I statistic. Specifically, the local Moran’s I statistic is

Ii = zi∑
z2

i

∑

j

wij z j (1)

where z is the mean-deviated contribution amounts given
by Asian Americans. Inference is based on a condi-
tional randomization approach.10 The average of the local
Moran’s I statistics is equal to the global Moran’s I, to a
factor of proportionality. Examining the local autocorre-
lation statistics allows us to identify observations that are
“extreme contributions” to the global statistic by noting
which values are, say, 2 or more standard deviations from
the mean. These local indicators allow us, moreover, to

and contiguity definitions were briefly explored, but were not used,
as it is difficult to reconcile these specifications with a substantive
story or theory.

9Note as well that because the Moran’s I statistic is sensitive to
other forms of specification errors such as non-normality and het-
eroskedasticity (Anselin and Rey 1991), these results should be ex-
amined further. Both of these characteristics can affect the sensi-
tivity of the results.

10Significance was based on a permutation approach with the num-
ber of permutations set at 999.
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FIGURE 1 LISA Statistics and Rise in Contribution Activity
The plot on the left shows the rise in the sheer number of contributions and the rise in
the number of sites where contributions originate. The plot on the right shows a rise
in the number of significant LISA statistics each year and the relatively stable percentage
of significant LISA statistics.
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identify areas of interest that may have nonrandomly dis-
tributed values (high or low) in relation to their neighbor-
ing values. Rejection of the null hypothesis here indicates
local clustering (either a high value surrounded by high
values or a low value surrounded by low values) or local
spatial outliers (a high value surrounded by low values or
a low value surrounded by high values). Figures A-1–A-
10 display plots of the LISA statistics for each of the years
listed in Table 1.11 The black dots indicate areas with sig-
nificant LISA statistics. The grey dots indicate areas with
insignificant LISA statistics.

Two observations are immediately obvious from this
set of plots. The first observation is that the number of
sites where contributions originate generally increases ev-
ery two-year cycle. An examination of the data indicate
that the sheer number of contributions generally increases
every election cycle as well. We can see this graphically in
the plot on the left in Figure 1. So, as a group, Asian
Americans are becoming increasingly active in this form
of political participation. The number of contributors is
rising and their geographical diversity is growing. Sec-
ond, more observations have significant LISA statistics at
the end of the time cycle than at the beginning. In other
words, with each passing election cycle, more observa-
tions are correlated with their neighboring values, giving
one more reason to explore possible diffusion effects. We
can see this graphically in the plot on the right of Figure 1.

11Alaska and Hawaii are included in the analysis, though not in the
plots. The omission from the plots is purely a matter of aesthetics.

The dotted line in this plot indicates that despite the clear
rise in both the sheer number of significant observations
and the clear upward swing of the numeric base of corre-
lated values, the percentage of all LISA statistics that are
significant in a given year does not change dramatically
over time.

If we make the leap to assume that the spatial auto-
correlation is more likely to originate from donors who
have resided in the U.S. for a longer period of time, because
they have simply had more opportunities to integrate into
a neighborhood structure, the patterns in the LISA statis-
tics might implicate some themes in the literature. For
instance, there may be evidence for the idea that newly
arrived immigrants behave uniquely relative to those who
have resided in the U.S. longer because their incentives and
cost structure differ significantly (Cho 1999; Wong 2000).
Relatedly, others have argued that one’s stake in the polit-
ical system and thus one’s level of political participation
rises concurrently with the amount of time an immigrant
is in the U.S. (Uhlaner, Cain, and Kiewiet 1989). For Asian
Americans, then, the continuous rapid flow of immigrants
serves to supply a constant set of new immigrants to the
mix as well as to expand the base of potential contribu-
tors. The rising number of significant LISA statistics imply
that these contributors are spatially related. This phenom-
enal growth shows no sign of yielding. The flow of Asian
immigrants into the U.S. has been nothing short of dra-
matic in the last few decades. The growth in the number
of contributors has almost kept this same phenomenal
pace.
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It is clear from these census figures and the plots in
Figure 1 that campaign finance is an increasingly pertinent
arena for those interested in the political behavior of the
most rapidly growing group in the U.S. With the passing
of each election cycle, a growing number and a broader
geographic mix of Asian Americans are engaging in this
form of political participation. Perhaps more importantly,
and more indicative of the sophistication behind this form
of behavior, the spatial patterns imply that the web that
underlies this form of behavior is growing in size as well
as complexity.

Spatial Models

Given that we have significant spatial autocorrelation in
our data, both on a global scale as well as a more local
scale, as indicated by the Moran’s I statistic and the large
number of significant LISA statistics every year, the next
step is to determine whether these spatial effects are true
spatial effects, or if they are spurious, in the sense that
they can be attributed entirely to patterns in other vari-
ables such as income or education. If we control for all of
these other factors and the spatial variable remains signif-
icant, then we have evidence that the pattern is consistent
with a “neighborhood effect”(via a spatially lagged de-
pendent variable), or perhaps an elite mobilization effect
(via an unmeasured mobilization variable), but not an
effect that is solely attributable to socioeconomic char-
acteristics of these areas. In other words, if contribution
amounts are determined solely by the structural factors
included in the model as independent variables, no re-
maining spatial patterning of contribution amounts be-
yond those resulting from socio-demographic similarity
of geographically-proximate areas should remain.

For the national data, the spatial dependence that
appears in the contributions data may be modeled as a
spatial lag model.12 The robust Lagrange Multiplier diag-
nostics for each of the years, excluding 1986, indicate that

12The specification of the spatial model is, of course, chosen after
examining the data and various diagnostics. The other large class of
models involves modeling the spatial dependence as a spatial error
model. In the spatial error model, the dependence is incorporated
into the error structure so that E [εi ε j ] �= 0, i.e. the off-diagonal el-
ements of the error covariance matrix are non-zero and incorporate
the structure of the spatial dependence. In this case, OLS is unbi-
ased but is not efficient. So, the estimate of standard errors will be
biased. The spatial error model would evaluate the extent to which
the spatial patterns of campaign contributions not explained by the
measured independent variables can be accounted for by clustering
of error terms. In other words, the spatial error model captures
the spatial effects of unmeasured independent variables. A satisfac-
tory spatial error model implies that a spatially-lagged dependent
variable is not necessary for explaining the observed spatial pat-
terns. Instead, the patterns are explained by geographic patterning

the spatial lag route would be profitable. In the spatial lag
model, an otherwise routine regression has an additional
regressor that takes the form of a spatially lagged depen-
dent variable, Wy. That is, the spatial lag model would
take the form

y = � Wy + X� + ε

where W is an N × N spatial weights matrix, � is the
spatial autoregressive coefficient, ε is the error term, and X
and � have the usual interpretation in a regression model.
The spatial lag can be seen as the weighted average (with
the wij being the weights) of its geographically-defined
neighbors. In this model specification, because the lag
term is correlated with the error term, OLS should not be
used, since it will be both biased and inconsistent (Ord
1975; Anselin 1988). Instead, the spatial lag model should
be estimated via a maximum likelihood or instrumental
variables formulation.

The spatial lag model is most consistent with conta-
gion theories and diffusion processes. The explicit inclu-
sion of the spatial lag term implies that the influence of a
“neighbor’s” (as defined by the weights matrix) contribu-
tion amount is not an artifact of measured and unmea-
sured independent variables, but that the contribution
amounts in neighboring areas actually increases the like-
lihood of campaign contributions in its neighbors. Note
that the evidence of a diffusion or contagion effect is in-
direct. The spatial regression models cannot identify the
specific mechanism that produces the spatial effects. In-
stead, the value added is that if the observed phenomenon
were actually characterized by a diffusion process, then we
would expect to see these spatial imprints emerge. The dis-
covery of spatial effects, then, behooves future research to
place some emphasis on uncovering the mechanisms that
would produce diffusion.

of measured and unmeasured independent variables. Whether a
spatial lag or a spatial error formulation is employed is a decision
that is based on diagnostics. In this particular study, the diagnos-
tics indicated that no spatial effects remained in the 1986 national
data after controlling for other covariates. The spatial effects were
not detected in the model even though the Moran’s I statistic for
the 1986 data was significant. This is not unusual, as the Moran’s I
statistic is very sensitive to various forms of specification errors such
as non-normality and heteroskedasticity (Anselin and Rey 1991). A
little exploration into these data indicate the presence of both non-
normality and heteroskedasticity. For the other years, the robust
Lagrange Multiplier diagnostic for the spatial lag was significant.
Somewhat atypically, the robust Lagrange Multiplier diagnostics for
spatial error was also significant in some of the years (1988–1998
for the national data, and 1990, 1992, and 1998 for the western re-
gion data). Because the robust Lagrange Multiplier lag test statistic
is larger than the robust Lagrange Multiplier error test statistic, a
spatial lag model was pursued. Attempts to explore sources of spa-
tial heterogeneity in the data helped to resolve this issue for some
of the data, but not these aforementioned years.
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These data also exhibit qualities consistent with spa-
tial heterogeneity as indicated by spatial Chow tests on the
overall coefficient stability across regimes. In particular,
we can see from Table 2 that a spatial Chow test indi-
cates that observations in the West differed significantly
from observations in other states for each election cycle
beginning in 1988. Given the evidence of distinct spatial
regimes, a disaggregated modeling strategy is pursued for
these data. That is, we analyze separate models for each
region and examine each of these models separately for
evidence of spatial dependence. In addition, spatial Chow
tests for the non-western states also indicate that the states
in the Northeast are significantly different from the other
non-western states for each of the years from 1988–1998,
except 1990. These pockets of distinctive behavior are not
surprising given our substantive inclinations about the
Asian American group. The bulk of the Asian American
population resides in the West, and proportionally, the
West bears more than its share of campaign contributors.
The Northeast bears many of these same qualities, but to
a lesser degree.

The models for the entire nation are reported in
Table 2.13 The models for the other regions are displayed
in Tables 3 and 4. Spatial lag models are indicated by a
value for the spatial lag variable, while spatial error mod-
els are indicated by a value for the spatial error variable.14

13As previously discussed, non-normality and heteroskedastic-
ity affect the estimation (Anselin and Rey 1991). Because the
Koenker-Basset diagnostic for heteroskedasticity indicated that het-
eroskedasticity might be an issue for the 1980, and 1990–1998 na-
tional data, the model for these years is computed via instrumental
variables (2SLS) with a groupwise heteroskedasticity variable. In
the presence of a high degree of non-normality and especially for
large data sets, 2SLS is the preferred strategy over the asymptoti-
cally more efficient maximum likelihood approach. The groupwise
heteroskedasticity variable is a region variable (Northeast, South,
Midwest, Central South, Mountain states, California, Hawaii, and
the rest of the West). Inclusion of this variable alleviated the prob-
lem with heteroskedasticity in all of the years except 1990 and 1992.
That is, the Koenker-Basset diagnostic does not indicate a problem
with heteroskedasticity once this region variable is included.

14For the West, the Koenker-Basset diagnostic for heteroskedastic-
ity indicated that heteroskedasticity might be an issue in these data
for the years 1988–1998. Hence, the model for these years was com-
puted via instrumental variables with a groupwise heteroskedastic-
ity variable. In this case, the groupwise heteroskedasticity variable
separated the regions of California (Bay Area, Los Angeles area,
Central Valley, and the remaining parts of California), and the rest
of the western region (Oregon, Washington, Hawaii, and Alaska).
Inclusion of this variable alleviated the problem with heteroskedas-
ticity in all of the models. In 1990, and 1998, the data indicate
that a spatial error model may be appropriate, but the spatial er-
ror model diagnostics indicate additional spatial lag dependence,
and the spatial lag models had slightly better fit statistics, and so
Table 3 reports the spatial lag results. For the Northeast, each model
was computed via instrumental variables with a groupwise het-
eroskedasticity variable. In the other regions, only the 1992 and

In each of the tables, the column heading is the year indi-
cator. The dependent variable is the amount in contribu-
tions received from Asian donors, and observations are
zip codes.15

The results vary somewhat from year to year, but
some consistent themes are evident as well. One impli-
cation of these patterns of change and stability is that the
logic behind Asian American contributions is evolving,
not static in this twenty-year time period. Although one
might prefer and expect an overarching story, the lack of
a single story throughout this time period is not unusual
and should not necessarily be expected given the phenom-
enal growth and compositional change that has charac-
terized this time period for the Asian American group.
Asian Americans have been arriving in droves only since
the late 1960s, after the Immigration and Nationality Act
of 1965 eliminated racial quotas. One can hardly expect in
some 15–30 years that they would have established deep-
set grooves of political behavior in an American system
that was, until just recently, largely foreign to them. In-
tegrating into the political mainstream certainly does not
occur instantaneously (see e.g., Reedy 1991 and Glazer
and Moynihan 1972), and so we should not expect that a
group’s political presence would appear instantaneously
with its physical presence. Moreover, we would expect the
establishment of a pattern of political behavior to follow
later yet.

The theme of change is one that has been uncovered
by previous studies (Tam 1995; Wong 2000; Lien 2001).
Indeed, as will see, several themes of the Asian American
political behavior literature will be uncovered again, while
some will appear to have changed. The difference is that
spatial effects are explicitly considered here. The interplay
between spatial effects and the traditional individual-level
variables affects the results. In some instances, the effects
will be evident simultaneously. In others, one effect may
dominant the others or negatively impact the others.

Strikingly, the early patterns of contributions do not
seem to be related to income. The lack of relationship
here is surprising given the strong relationship between
an individual’s income level and campaign contribu-
tions that has been uncovered by more than one study
(Rosenstone and Hansen 1993; Verba, Scholzman, and
Brady 1995; Brown, Powell, and Wilcox 1995; Gierzynski
2000). In these data, the relationship between income and

1996 data had indications of heteroskedasticity. The other models
were computed via maximum likelihood.

15Only zip codes where some money originated from Asian
Americans are included. The other zip codes are essentially “is-
lands,” and so there is no “neighboring behavior” to observe or
analyze.
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TABLE 4 Spatial Lag Models. Dependent Variable: Contribution Amount from Asian Americans
at the Zip Code Level (Northeast and Other Regions)

1988 1990 1992 1994 1996 1998

Northeast
Constant −17164.50∗∗ −8794.43∗∗ −11076.4∗∗ −23848.30∗∗ −1229.86∗∗

(3999.68) (2288.65) (2477.17) (4253.9) (3416.58)
Population 39.58∗∗ 51.01∗∗ 37.51∗∗ 97.78∗∗ 41.90∗∗

(18.12) (12.35) (12.74) (22.67) (18.77)
Percent Asian 219.16∗∗ 130.98∗∗ 67.95 390.33∗∗ 132.32∗∗

(49.61) (35.98) (35.35) (67.31) (53.64)
Age 6134.51∗∗ 2458.78∗∗ 2770.62∗∗ 5860.38∗∗ 2546.80

(1596.74) (916.52) (989.90) (1699.22) (1431.64)
Education 213.88 332.24 1214.24∗∗ 1709.21∗∗ 1467.45∗∗

(646.87) (416.24) (475.53) (860.83) (624.09)
Income 823.68∗∗ 485.95∗∗ 138.64 715.05∗∗ 224.22

(233.01) (153.39) (171.13) (311.64) (230.03)
Percent Minority 16.83 −7.10 −5.38 8.66 −1.88

(20.03) (11.89) (12.47) (23.08) (17.22)
Spatial Lag (r ) 0.00 0.02∗∗ 0.02∗∗

(0.01) (0.00) (0.01)
Spatial Error (l ) 0.05∗∗ 0.03∗∗

(0.00) (0.01)
R2 0.17 0.21 0.14 0.17 0.13
N 401 613 516 651 581

Other Regions
Constant 18.21 −2626.48∗∗ −2903.96 −461.45 −2247.06 569.54

(1354.16) (1202.37) (2307.06) (1134.60) (1618.68) (879.10)
Population −1.36 26.81∗∗ 0.94 −7.71 −3.58 5.81

(8.88) (7.49) 15.60 (8.11) (11.16) (6.31)
Percent Asian 59.72 104.70∗∗ 12.55 29.98 63.31 110.11∗∗

(43.94) (25.17) 52.89 (46.32) (61.39) (40.53)
Age 201.20 710.69 402.56 314.01 1016.10 283.07

(426.22) (446.67) (795.24) (389.48) (568.06) (300.91)
Education 141.81 41.52 404.67 228.03 −273.28 −266.73

(280.91) (245.46) (518.80) (258.08) (354.28) (196.41)
Income 100.18 332.26∗∗ 474.49∗∗ 48.15 698.35∗∗ 212.99∗∗

(108.82) (96.50) (214.22) (104.78) (156.36) (89.94)
Percent Minority 0.70 3.03 20.74 7.25 13.68 −2.12

(7.57) (6.68) (6.69) (13.09) (8.81) (4.97)
Spatial Lag (r ) 0.05 0.01∗∗ 0.03 0.06∗∗ 0.05∗∗ 0.07∗∗

(0.03) (0.00) (0.03) (0.02) (0.02) (0.01)
R2 0.05 0.11 0.03 0.03 0.07 0.08
N 324 918 760 701 980 874

Note: Standard errors in parentheses.
∗∗ p < 0.05.

contributions does not appear to be established until
the mid-1980s. Once this pattern emerges, the analy-
sis indicates that it persists. Although this relationship
may not concur with the bulk of the literature on cam-

paign finance, one must consider that the population
bases for these previous studies have been comprised
of primarily native-born Americans. Variation on the
native-born/foreign-born dimension in those studies was
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virtually absent and if present, not a primary concern in
the analysis.

These data, in contrast, are rich in variance on the na-
tivity dimension, permitting us to catch a glimpse into the
unfolding of the political incorporation dynamic. Hence,
while the initial reaction to an insignificant income co-
efficient is somewhat surprising, some reflection on the
context of these data mutes this initial reaction. Despite
the oft-heard claim that Asians contribute primarily be-
cause of their high income levels (Lew 1987), then, the
evidence here implies that the dynamic is considerably
more complex. The evidence for a contagion effect is
becoming stronger with each passing election, implying
that Asian Americans are becoming increasingly sophisti-
cated political actors with more and stronger intragroup
ties.16 As indicated by the significant income coefficient
in later years, income levels may partly explain the behav-
ior, but it is certainly not the sole determinant, and not
even a significant part of the explanation in the earlier
years.

Another strong similarity between the results in the
various regions is that the “Percent Asian” variable is sig-
nificant and generally rising throughout. The only excep-
tion is in the “Other Regions,” where Asian Americans
are also the most sparse. In the rest of the country, how-
ever, the main jump in values for this variable, as for the
income variable, again occurs in the mid-1980s, where
the magnitude of the coefficients makes a clear rise to a
new plateau. At this point, activity rises, and the orga-
nization of this activity becomes more evident. The basic

16Note that while the data here are at the zip code level and we are
primarily interested in individual behavior, this is not a classic case
of the ecological inference problem. The reason is that the depen-
dent variable, the amount in contributions from Asian Americans,
we know, is attributable only to the Asian American residents in the
zip code areas. We are unsure if the median income of the zip code
area is representative of the median income of Asian Americans in
the zip code area. However, a zip code area is a relatively small geo-
graphic unit, so this should not be a pervasive problem. The issue is
how well the variable measures the underlying heterogeneity. Thus,
problems that may occur in the analysis and interpretation are all re-
lated to the extent that zip codes variables do not adequately capture
the underlying heterogeneity. This same caveat applies to the age
variable. Other variables like population, percent Asian, and per-
cent minority are less problematic. The percent Asian variable can
obviously be attributable only to Asian Americans, and this variable
is a basic measure of context. The percent minority variable does
not apply only to Asians, but is instead the percentage of the area
that is comprised of blacks and Hispanics. However, this variable,
like the percent Asian variable, is a measure of context. It gives us
an indication of how contribution amounts from Asian Americans
vary as a function of context. The population variable allows us
to examine how contribution amounts vary as population density
changes. Hence, these last three variables are not problematic, as
they are measured on a level of interest.

interpretation of the coefficient on “Percent Asian” is that
as the percentage of Asians in a zip code rises, so too do
the dollar amounts that are donated by Asians from those
areas. Note that this is not simply a function of a larger
population base in some areas, since the model controls
for differences in population. The effect is over and above
the population effect. Hence, Asian Americans are at least
as active as others in terms of donating, and far from
passive in this form of political behavior. This effect is
present even when the income effect is absent, so it is not
necessarily related to socioeconomic factors.

On more than one dimension, then, the confluence
of a number of factors in the mid-1980s seems to have sig-
naled a silent “new age” for Asian American politics, one
that gives credence to the claims that the Asian American
group is a “sleeping giant.” The giant still appears to be
in a state of semi-slumber, but there is evidence that the
giant is beginning to stir. Notably, the observed changes
in the 1980s coincide with the appearance of the first sig-
nificant numbers of Asian American candidates for po-
litical office.17 So the period of the 1980s for this group
was indeed characterized by change on many political
dimensions.

The most notable difference between the results for
various regions is that, in all regions except the West, as the
percentage of other minority residents rises, there seems
to be little to no effect on campaign contributions from
Asian Americans. In the West, however, we can see from
Table 3 that there is a significant and negative effect. So, on
a national scale and in the non-western states, after con-
trolling for other variables, the dollar amounts that flow to
candidates neither rises nor falls as the heterogeneity of the
minority composition increased. In the West, the dollar
amounts from Asian Americans decline in areas that are
more ethnically heterogeneous. Hence, while there seems
to be some ethnic contribution network at play among
Asian Americans, this web of donations does not appear
to cast itself more widely to include other ethnic groups on
a national scale, and is negatively affected by other ethnic
groups in the West. This result accords with much of the
ethnic studies literature on political coalitions, namely,
that Asian Americans do not generally align themselves
with other minority groups to form a broader coalition
(Saito 1998; Cho and Cain 2001; Lien 2001). The field of

17Prior to the 1980s, there were few Asian American candidates.
Although there were not a large number of candidates in the 1980s,
and many of the candidates who did run were unsuccessful, the
rise in numbers was nonetheless significant. During the 1980s, the
number of Asian American candidates who ran for office rose to
the double digits. This number increased dramatically in the 1990s.
See Cho (2002) for a complete list.
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campaign finance, where Asian Americans are especially
active, does not appear to be an exception.

Interestingly, even after we control for socio-
economic and demographic factors, variables widely
recognized to be influential, the spatial lag is still signif-
icant. This result holds for every year examined in the
entire U.S. (except for 1986) as well as just the western
region. The general pattern holds in the other regions as
well. In the West, although the patterns among all of the
variables is roughly the same, the magnitude of the spatial
lag effect is larger and the models generally explain more
variance in the data. It is not particularly surprising that
the West would exhibit more spatial effects given that it has
traditionally hosted and continues to host the bulk of the
Asian American populace. The type of ethnic networks
that we seek through the analysis pursued here are most
likely to occur in locations where Asian Americans have
resided the longest. As the length of time increases, there
are more opportunities to integrate into the community
as well as into the political scene.

Moreover, as the size of the community grows, there
are more opportunities and outlets to integrate into the
community. Hence, what is surprising is the simple ex-
istence of spatial effects that is evident apart from the
tried-and-true socioeconomic indicators. Contribution
amounts, then, are not generated solely by the non-
spatial structural factors that have been identified by ear-
lier research. Given that these effects exist, the relative
magnitude of these effects in the West and in the nation
align with initial expectations. While some of these spatial
lag effects may seem small initially, note that the depen-
dent variable is dollar amounts. In this time span, Asian
Americans have contributed millions of dollars. The spa-
tial lag effects, in terms of proportion, has remained
largely the same, but the dollar amounts have increased
seven-fold, and have regularly exceeded 7 million dollars
in the 1990s. Thus, the effect is both substantively and
statistically significant.18 These effects are also likely to be
tempered because the Asian American group is consid-
ered as a whole here, but ethnic networks are likely to be
stronger within the various ethnicities that comprise the
larger group.

The autocorrelated geographic patterns that we see
in the models with significant spatial lag effects are typ-

18Moreover, these estimates are conservative. The spatial effects are
likely to be much greater. The data here include all donations. If
we were to limit the data to donations just to Democrats or just to
Republicans, one can see how the diffusion effect would be expected
to be larger. Within-party donations are more likely to beget more
donations than to beget donations to the other party. Examining all
of the donations, then, likely tempers the observed spatial effects.

ical of those patterns we might observe if contagion or
diffusion effects were at play. People influencing people,
and contributions begetting more contributions. Socio-
economic factors are also at play, but contrary to stud-
ies that examine only the atomistic actor outside of the
context in which he resides, there is considerable evi-
dence that contextual factors are also at play. The exact
manner in which these webs operate is not clear from
this analysis. However, we can see the emergence of the
idea that candidates can tap into a ethnic contribution
network.

For some of the years in the national data, 1988–1998,
diagnostics for the spatial model indicate that some spa-
tial error dependence remains. In the data for the western
region, there appears to be some remaining spatial er-
ror dependence in a few of the years as well (1990, 1992,
1998). The spatial effects in these years are more com-
plex than in the years where the diagnostics indicate no
remaining spatial error dependence. That these years are
clustered toward the end of the time period examined
appears to indicate again that the complexity underlying
the contribution dynamic is growing. In earlier years, the
spatial lag was sufficient.19 Because there are remaining
spatial effects in these latter years from some unmeasured
variable or variables, it is more difficult to expound on
the origins of the spatial patterning. There seems to be
some effect that can be captured via a spatial lag (i.e.
an effect consistent with a diffusion process), but also
some effect that may be, perhaps, consistent with a po-
litical mobilization or candidate effect story, where the
variable (or variables) that measures these effects are not
included or perhaps not available. Exploring these addi-
tional sources of spatial patterning and the mechanisms
that may be lurking beneath these spatial patterns is an
obvious extension of the analysis presented here. In gen-
eral, fit statistics and diagnostics indicated that the spatial
lag model was more appropriate, although some spatial
error dependence did remain in several of the years. In the
Northeast, the spatial error model was more appropriate
for two of the years. The evidence, then, seems more con-
sistent with a contagion effect than a mobilization effort,

19These models are still not ideal for several reasons. One reason that
has already been mentioned is the difficulty of discerning the vari-
ous types of spatial effects that may exist (i.e., spatial heterogeneity
and spatial lag versus spatial error dependence). Another problem
is that the model diagnostics show evidence of non-normality. Fi-
nally, the inclusion of the spatial dependence parameter did not
eliminate the heterogeneity in every case. The data are limited, how-
ever, so the difficulty is exacerbated. The data need to be merged
into the FEC data at some level of aggregation. The Census provides
many socioeconomic variables, but no political variables, which
may be useful here.
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though there is some evidence of a mobilization effect as
well. In any case, these data are complex on the spatial
realm, with manifestations of many forms of spatial ef-
fects, from lag dependence to error dependence to spatial
heterogeneity.

Conclusion

Donation rates across the country vary. Most of the
analysis of these rates, however, have focused on the
individual actor, acting within his own realm, making
decisions based upon his own personal resources. For in-
stance, past research has suggested that socioeconomic
factors figure prominently in the decision to contribute
(Sorauf 1988; Rosenstone and Hansen 1993; Verba,
Scholzman, and Brady 1995; Brown, Powell, and Wilcox
1995; Gierzynski 2000). In the Asian American context
specifically, research suggests that socioeconomic factors
are at play, but that ethnic cues are also important. In nei-
ther the research on minority nor nonminority groups is
there a focus on social context and how that might affect
the contribution dynamic.

A central question in this article is whether the in-
dividual effects remain even after spatial effects are con-
trolled. If the spatial lag is not significant, then we can ex-
plain the clustering of donation rates with covariates that
measure individual characteristics. That is, “imitation” or
diffusion through social networks cannot explain the clus-
tering. Alternatively, if some clustering effect remains even
after the covariates related to individual characteristics are
controlled, then a diffusion process is likely to be a factor.
As we saw from the analysis, spatial effects remain even
after individual effects are controlled, implying that some
type of diffusion force prominently underlies the Asian
American campaign contribution network. In some of the
later years, additional spatial error dependence remains,
implying perhaps that some elite mobilization effort or

candidate effect is fueling some of the spatial patterning.
In either case, these spatial effects do not originate solely
from the socioeconomic variables included in the model
or completely within the realm of the individual-level ex-
planations offered by previous research. Clearly, context
plays a role.

By the end of the time span examined here, the pat-
terns that we would expect to occur among the general
populous manifest themselves among Asian Americans.
Both the spatial lag as well as the socioeconomic indica-
tors become significant predictors of geographical pat-
terns of contributions. Whether these patterns will en-
dure or how these patterns may morph in the future may
be questionable, but the roots of the contextual effects
have been laid. From the analysis presented thus far, we
can see that the story is partly one of the atomistic ac-
tor acting alone, but it is also the story of the individ-
ual actor within the context of a more broadly defined
neighborhood. In this way, the ethnic contribution net-
work is nothing to balk. While less sophisticated politi-
cal actors act alone, without a clear understanding of the
immense benefits that arise from collective action, there
is now evidence that Asian Americans are tending away
from the less sophisticated individual-level model, and to-
ward a more complex and involved networked model of
behavior.

To be sure, Asian Americans bear some unique qual-
ities as only one group of the polity. Nonetheless, the dif-
fusion story likely underlies all of the campaign finance
data and has broader implications for political behavior
theories.20 Certainly the social context literature has al-
ready advanced these theories, and so empirical studies
will not lag much further behind. Here, limiting the anal-
ysis makes it feasible. Although broad and varied theories
of network and neighborhood effects are posited with-
out matching empirical verification, this analysis begins
to move in a new direction and gives gusto to the adage
that context matters.

20The limitations in computing power and model complexity, at
the moment, hinder a larger study of the entire FEC database.
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FIGURE A-1 LISA Statistics for 1980

FIGURE A-2 LISA Statistics for 1982

FIGURE A-3 LISA Statistics for 1984

APPENDIX A: LISA Statistics21

21Black dots indicate a zip code with a significant LISA statistic.
Grey dots indicate a zip code with an insignificant LISA statistic.
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FIGURE A-4 LISA Statistics for 1986

FIGURE A-5 LISA Statistics for 1988

FIGURE A-6 LISA Statistics for 1990

Case: 3:15-cv-00421-jdp   Document #: 72-6   Filed: 01/26/16   Page 16 of 20



384 WENDY K. TAM CHO

FIGURE A-7 LISA Statistics for 1992

FIGURE A-8 LISA Statistics for 1994

FIGURE A-9 LISA Statistics for 1996
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FIGURE A-10 LISA Statistics for 1998
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3
MEASURES OF SPATIAL
SEGREGATION

Sean F. Reardon*
David O’Sullivan**

The measurement of residential segregation patterns and trends

has been limited by a reliance on segregation measures that do

not appropriately take into account the spatial patterning

of population distributions. In this paper we define a general

approach to measuring spatial segregation among multiple popu-

lation groups. This general approach allows researchers to

specify any theoretically based definition of spatial proximity

desired in computing segregation measures. Based on this gen-

eral approach, we develop a general spatial exposure/isolation

index ( ~PP*), and a set of general multigroup spatial evenness/
clustering indices: a spatial information theory index ( ~HH), a
spatial relative diversity index ( ~RR), and a spatial dissimilarity
index ( ~DD). We review these and previously proposed spatial

segregation indices against a set of eight desirable properties of

spatial segregation indices. We conclude that the spatial

exposure/isolation index ~PP*—which can be interpreted as a
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measure of the average composition of individuals’ local spatial

environments—and the spatial information theory index
~HH—which can be interpreted as a measure of the variation in

the diversity of the local spatial environments of each individ-

ual—are the most conceptually and mathematically satisfactory

of the proposed spatial indices.

1. INTRODUCTION—SEGREGATION AND SPACE

Reliable and meaningful measurement of residential segregation is

essential to the study of the causes, patterns, and consequences of

racial and socioeconomic segregation. Nonetheless, prior work on

residential segregation has been limited by a reliance on methodolo-

gical tools that do not fully capture the spatial distributions of race

and poverty. Scholars have repeatedly pointed out that the most

commonly used measures of segregation—such as the dissimilarity

index (D), the exposure index (P*), the variance ratio index (V), and

the entropy-based information theory index (H)—are ‘‘aspatial,’’ mean-

ing that they do not adequately account for the spatial relationships

among residential locations (Grannis 2002; Massey and Denton 1988;

Morrill 1991; Reardon and Firebaugh 2002b; Wong 1993; Wong 2002).

In this paper, we take up the challenge of developing measures

of spatial segregation that satisfactorily address the problems identi-

fied with existing measures of segregation. We begin by arguing for a

set of criteria that would be met by a satisfactory spatial segregation

measure. We then present a new and general approach to measuring

spatial segregation that addresses the key limitations of prior spatial

measures. This approach allows researchers to specify theoretically

appropriate definitions of how spatial features constrain or enhance

the possibility of social interaction. Finally, we review previously

proposed measures of spatial segregation and evaluate both these

and our new measures against our criteria.

1.1. Methodological Issues in the Measurement of Spatial Segregation

Segregation can be thought of as the extent to which individuals of

different groups occupy or experience different social environments.

A measure of segregation, then, requires that we (1) define the social
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environment of each individual, and (2) quantify the extent to which

these social environments differ across individuals. Traditional meas-

ures of segregation are aspatial, in that they differ from one another

only on the second of these criteria, because they implicitly define the

social environment as equivalent to some organizational or spatial

unit (school, census tract), without regard for the patterning of these

units in social space. Much prior discussion of segregation indices,

then, has focused only on the matter of the most appropriate math-

ematical formulation for quantifying differences across social envir-

onments (James and Taeuber 1985; Reardon and Firebaugh 2002a;

White 1986; Zoloth 1976).

Aspatial segregation measures have been repeatedly criticized

in the residential segregation context for their failure to account for

the spatial patterning of census tracts (Grannis 2002; Massey and

Denton 1988; Morrill 1991; Wong 1993; Wong 2002). In particular,

two flaws of aspatial measures are identified: the checkerboard problem

(Morrill 1991; White 1983) and the modifiable areal unit problem

(Openshaw and Taylor 1979; Wong 1997). Each of these can be

seen as critiques of the definition of the social environment implicit

in the traditional segregation measures.

The checkerboard problem stems from the fact that aspatial

segregation measures ignore the spatial proximity of neighborhoods

and focus instead only on the racial composition of neighborhoods.

To visualize the problem, imagine a checkerboard where each square

represents an exclusively black or exclusively white neighborhood. If

all the black squares were moved to one side of the board, and all

white squares to the other, we would expect a measure of segregation

to register this change as an increase in segregation, since not

only would each neighborhood be racially homogeneous, but most

neighborhoods would now be surrounded by similarly homogeneous

neighborhoods. Aspatial measures of segregation, however, do not

distinguish between the first and second patterns, since in each case

the racial compositions of individual neighborhoods are the same

(White 1983).

The modifiable areal unit problem (MAUP) arises in residen-

tial segregation measurement because residential population data are

typically collected, aggregated, and reported for spatial units (such as

census tracts) that have no necessary correspondence with meaningful

social/spatial divisions. This data collection scheme implicitly assumes
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that individuals living near one another (perhaps even across the

street from one another) but in separate spatial units are more distant

from one another than are two individuals living relatively far from

one another but within the same spatial unit. As a result—unless

spatial subarea boundaries correspond to meaningful social bound-

aries—all measures of spatial and aspatial segregation that rely on

population counts aggregated within subareas are sensitive to the

definitions of the boundaries of these spatial subareas.1

Essentially then, the definition of spatial segregation measures

requires a redefinition of the social environment implicit in the tradi-

tional segregation measures. In fact, the checkerboard problem and

the MAUP are both artifacts of a reliance on subarea (e.g., tract)

boundaries in the computation of segregation measurement. In prin-

ciple, a segregation measure that used information on the exact loca-

tions of individuals and their proximities to one another in residential

space could eliminate the checkerboard problem and MAUP issues

entirely.

1.2. The Dimensions of Spatial Segregation

Another confusion in the segregation literature also results from relying

on census tract boundaries in computing segregation measures. In an

often-cited article, Massey and Denton (1988) describe five

conceptually distinct ‘‘dimensions’’ of residential segregation: (1) evenness,

(2) exposure, (3) clustering, (4) centralization, and (5) concentration.

In their formulation, evenness and exposure are aspatial dimensions

1In fact, the MAUP is constituted by two interrelated effects: an
aggregation (or scale) effect, and a zoning effect (Wong 1997). The aggregation
effect leads to differences in statistical measures resulting purely from dealing with
data that are ‘‘less detailed.’’ The difference between a statistic derived from tract
data and the same statistic derived for block group data, for example, is an
aggregation effect. For segregation measures, greater aggregation usually results
in lower measured levels of segregation. The zoning effect refers to the fact that
any measure derived from aggregated population data depends on the choice of
aggregation zones (i.e., the ‘‘modifiable areas’’), even if the scale and number of
the zones remains fixed. With regard to the census tracts often used in studies of
segregation, the effect is initially to exaggerate segregation (because tracts are
designed to be relatively homogeneous internally). However, over time, if the
same zones are retained, measured levels of segregation fall (Massey and Denton
1988).

124 REARDON AND O’SULLIVAN

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 4 of 42



(allowing that they are nonetheless implicitly spatial because they

depend on census tract boundaries), while clustering, concentration,

and centralization are explicitly spatial dimensions of segregation,

and they require information on the location and size of census

tracts to compute.

The distinction between aspatial evenness and spatial cluster-

ing, however, is an artifact of the reliance on spatial subareas (e.g.,

census tracts) at some chosen geographical scale of aggregation.

Evenness, in Massey and Denton’s formulation, refers to the degree

to which members of different groups are over- and underrepresented

in different subareas relative to their overall proportions in the popu-

lation. Clustering refers to the proximity of subareas with similar

group proportions to one another. However, evenness at one level

of aggregation (say, census tracts), is clearly strongly related to clus-

tering at a lower level of aggregation (say, block groups), since tracts

where a minority group is overrepresented will tend to be clusters of

block groups where the minority population is overrepresented.

Unless subarea boundaries correspond to meaningful social bound-

aries, the distinction between evenness and clustering is thus arbitrary.

In principle, if we derived a segregation measure from informa-

tion about the exact locations and spatial environments of individuals

and their proximities to one another in residential space, there would

be no conceptual distinction at all between evenness and clustering.

Any movement of an individual that increased unevenness (by moving

a person from a location where his or her group is underrepresented

to one where it is overrepresented) would also increase clustering,

because it would result in members of the same groups being nearer

to one another.

As a result of this insight, we suggest an alternative to the

Massey and Denton (1988) dimensions of residential segregation.

We argue that there are two primary conceptual dimensions to spatial

residential segregation: (1) spatial exposure (or spatial isolation) and

(2) spatial evenness (or spatial clustering). Spatial exposure refers to

the extent that members of one group encounter members of another

group (or their own group, in the case of spatial isolation) in their

local spatial environments. Spatial evenness, or clustering, refers to the

extent to which groups are similarly distributed in residential space.

Spatial exposure, like aspatial exposure, is a measure of the typical

environment experienced by individuals; it depends in part on the
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overall racial composition of the population in the region under

investigation. Spatial evenness, in contrast, is independent of the

population composition.

To see that spatial exposure and evenness are conceptually

distinct, consider the four patterns of individual residential locations

(not subarea proportions) shown in Figure 1. In the upper half of the

diagram are two patterns where black and white households are

evenly distributed throughout space. Both of these patterns have

low levels of spatial clustering (or high levels of spatial evenness). In

the pattern on the upper right, however, there are more black house-

holds in the local environment of each white household (and vice

versa) than in the pattern on the upper left; this means that the

white-black exposure is higher on the right, and the white isolation

is higher on the left. In the bottom half of the figure, both patterns

FIGURE 1. Dimensions of spatial segregation.

126 REARDON AND O’SULLIVAN

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 6 of 42



show greater clustering—but roughly the same levels of exposure—

than the corresponding patterns above.

In this framework, Massey and Denton’s evenness and cluster-

ing dimensions are collapsed into a single dimension. Their exposure

dimension remains intact, but it is now conceptualized as explicitly

spatial. Their centralization and concentration dimensions can be seen

as specific subcategories of spatial unevenness. In some cases, central-

ization and concentration may be of sufficient theoretical interest to

be considered distinct subdimensions; however, we do not consider

them further in this paper.

1.3. Existing Measures of Spatial Segregation

Many spatial measures have been developed to address the metho-

dological shortcomings identified above (for example, see Frank

2003; Grannis 2002; Jakubs 1981; Massey and Denton 1988;

Morgan 1982, 1983a, 1983b; Morrill 1991; Waldorf 1993; White 1983,

1986; Wong 1993; Wong 1998, 1999, 2002), although it is not clear

that any of the proposed measures fully solve the problem of meas-

uring spatial segregation. Many of the measures have been devel-

oped in a relatively ad hoc manner, and none have been evaluated

against a conceptually meaningful set of criteria, as has been done

for the traditional aspatial measures (James and Taeuber 1985;

Reardon and Firebaugh 2002a), so it is unclear whether they reliably

produce results consistent with theoretically useful definitions of

segregation.

At present, few of the proposed spatial segregation measures

have been used in published empirical segregation research. These

measures have been ignored in part because they typically are more

difficult to compute than the aspatial measures. At present, there is

also still little publicly available software to compute spatial segrega-

tion measures—Wong’s extensions to the Arc/INFO (Wong and

Chong 1998) and ArcView GIS software (Wong 2003), and Apparicio’s

extension to MapInfo GIS (Apparicio 2000) are the only examples

that we are aware of. This limitation, however, is likely to become

less relevant with the increased availability and ease of use of

geographical information system (GIS) software (Longley et al.

2001). However, in the absence of a clear evaluation of the proposed
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measures, the development of GIS software is likely to lead to

a situation where researchers use a wide variety of different

measures, resulting in findings that cannot be easily compared across

studies.

2. MEASURES OF SPATIAL SEGREGATION

2.1. Notation

Throughout this paper, we use the following notation: consider a

spatial region R populated by M mutually exclusive population sub-

groups (e.g., racial groups), indexed by m. Let p, q, and s index points

within the region R; and let r index subareas of the region R (e.g.,

census tracts). Let � denote population density and � denote popula-

tion proportion. In addition, we use a super-positioned tilde (�) to

indicate that a parameter describes the spatial environment of a given

point, rather than the point itself. Thus we have

�p ¼ population density at point p;

�pm ¼ population density of group m at point p ðnote that
X
m

�pm ¼ �pÞ;

T ¼ total population in R ðnote that

Z
p

�pdp ¼ TÞ;

~��pm ¼ population density of group m in the local environment of point p;

�m ¼ proportion in group m of total population ðe:g:;proportion blackÞ;
�pm ¼ proportion in group m at point p ðdefined as �pm ¼ �pm=�pÞ;
~��pm ¼ proportion in group m in the local environment of point p:

Note that the population densities �p and �pm are defined by the

population counts per unit area at location p. In practice, these

must be estimated from census tract (or other subarea) population

counts, most simply by dividing the population count of a tract by its

area and assigning the population density this value at each point in

the tract. Other density estimation procedures might be used as well,

including pycnophylactic (‘‘mass preserving’’) smoothing and dasy-

metric mapping (for example, see Dent 1999; Mennis 2003; Tobler

1979). We leave discussion of these estimation methods and of the
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sensitivity of segregation measurement to different choices of density

estimators, however, for another paper.

2.2. Spatial Proximity and the Local Environment

The measurement of spatial segregation requires that we define

the spatial proximity between all pairs of points in a region R. Let

�(p, q) be a non-negative function that defines the spatial proximity of

locations q and p, such that �(p, q)¼�(q, p) and �(q, q)¼�(p, p) for

all p, q2R, and with larger values of �(p, q) indicating greater proxi-

mity. Let �p ¼
R
q2R �ðp; qÞdq, noting that we do not require �p¼�q

for all p, q2R. We define the population density of the local environ-

ment of a point p as the weighted average of the population densities

of all other points in R, where points are weighted by their proximity

to p:2

~��p ¼
1

�p

Z
q2R

�q� p; qð Þdq: ð1Þ

We define ~��pm similarly, substituting �qm for �q in equation (1). Now

~��p and ~��pm are, respectively, the spatially weighted average population

density and the group m population density at point p. For each m,

~��pm describes a spatially smoothed population surface, where the value

of ~��pm at location p indicates the group m population density at point

p. We define

~��pm ¼ ~��pm
~��p

: ð2Þ

It is trivial to show that, for each location p,

XM
m¼1

~��pm ¼ 1: ð3Þ

We can think of the ~��pm’s as indicating the population composition

that a person living at point p would experience in his or her local

2Throughout this paper, we use a single integral to denote the
summation over all points in a region.
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environment, where the local environment is defined by the proximity

function �.3

The function �(p, q) may take on a variety of possible

forms, each implying a different definition of the local environment.

For example, �(p, q) might be a function that declines as the Eucli-

dean distance from p to q increases, which means that the spatial

environment of point p is influenced more by the population nearby

than by those more distant. The spatial proximity function �(p, q)

might also incorporate information about physical barriers (such

as rivers, railroads, or highways) and patterns of social interac-

tion between locations p and q. Ideally, a spatial proximity func-

tion should capture theoretically meaningful patterns of social

interaction.

One special case of the spatial proximity function is worth

noting. Measures of aspatial segregation implicitly define the local

environment of each individual as equivalent to the organizational

unit (e.g., census tract, school) containing the individual. Reardon

and Firebaugh (2002b) note that this can be seen as a special case of

the above definition of the local environment, where spatial proximity

is defined such that �(p, q) equals some constant c if p and q are both

in tract r and �(p, q)¼ 0 if p and q are in separate tracts. In this case,

equations (1) and (2) yield ~��pm ¼ �rm for all m and all p2r, indicating

that the group composition of the local environment at each point in r

is identical to the group proportions in tract r as a whole, regardless of

how population groups are distributed within the tract, or how tracts

are arranged in space (Reardon and Firebaugh 2002b). This insight—

that the aspatial segregation indices can be seen as spatial indices that

depend on a very specific notion of spatial proximity—will prove

3Note that we can rewrite equation (2) as

~��pm ¼
Z
q2R

�q� p; qð ÞR
s2R

�s� p; sð Þds�qmdq:

From this, we can see that ~��pm is a density- and proximity-weighted average of the
�qm’s for all q in R. In the aspatial case, population density and group propor-
tions are assumed constant within tracts and the spatial proximity of each pair of
distinct tracts is zero, so the above yields ~��pm ¼ �rm, where p is in tract r (see
Reardon and Firebaugh 2002b).
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useful in our approach to developing spatial segregation measures in

this paper.

2.3. Criteria for Evaluating Spatial Segregation Measures

Previous methodological work, drawing on the inequality meas-

urement literature (for example, see Schwartz and Winship 1980),

has defined a set of criteria for the evaluation of aspatial evenness

measures of segregation (James and Taeuber 1985; Reardon and

Firebaugh 2002a). Compliance with these criteria implies that a

measure will register an appropriate change in segregation levels

under specified conditions; conversely, noncompliance implies that

it is possible for a measure to respond to changes in population

distributions in ways that are inconsistent with conceptually appro-

priate definitions of segregation. Since the criteria were developed

with aspatial measures in mind, Reardon and Firebaugh (2002b)

suggest that they may need to be modified in order to apply them to

spatial segregation measures. Here we describe a general set of

criteria for segregation measures that apply to spatial evenness

measures. A subset of these reduce to the Reardon and Firebaugh

(2002a) criteria in the special case where a measure is aspatial.4 In

addition to these criteria, we suggest several additional desirable

properties that pertain specifically to spatial segregation indices.

Five of the criteria—scale interpretability, arbitrary boundary inde-

pendence, location equivalence, population density invariance, and

additive spatial decomposability—apply to measures of spatial expos-

ure as well.

1. Scale interpretability: A spatial segregation index should be equal

to zero if the group proportions are the same in the local environ-

ment of each individual. A segregation index should reach its

maximum value (typically normalized to equal 1) if the local

environment of each individual is monoracial. An alternate way

4In addition to possessing the properties described here, a spatial
segregation index should (1) be a continuous function of both the total and group
population densities at each point and of the spatial proximity function between
all points; (2) allow the computation of segregation among any number of
population groups; and (3) correspond to a meaningful (aspatial) segregation
measure in the aspatial special case.
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of stating this is that a segregation index should reach its

maximum value only if the proximity of any two members of

different groups is zero. A segregation index should take on a

negative value if the population is ‘‘hyper-integrated’’—if individ-

uals, on average, experience greater diversity in their local envir-

onments than the diversity of the population as a whole.5

2. Arbitrary boundary independence: A spatial segregation measure

should be independent of the definitions of census tract (or

other subarea) boundaries. In principle, a spatial segregation

measure should be computed from information about the exact

locations and spatial proximities of individuals in residential

space (although in practice, it may be necessary to use tract or

other subarea data to estimate local population densities). This

will ensure that a measure will not be susceptible to MAUP

issues.

3. Location equivalence: If the local environments of two points p

and q have the same population composition (i.e., if ~��pm ¼ ~��qm
for all m) and the same proximity to all other points (i.e.,

if �(p, s)¼�(q, s) for all s 6¼ p, q),6 then segregation is unchanged

if we treat the two points as one point with a population density

equal to the sum of the two original points. While this criterion

may seem to have little concrete application, it is a spatial general-

ization of the aspatial organizational equivalence criterion, which

states that if two organizational units (schools, tracts) have the

5In the spatial case, unlike the aspatial case, it may be possible—and
meaningful—for the average individual to experience greater diversity in his or
her local environment than the diversity of the population as a whole. Consider
the residential pattern shown in the upper-right corner of Figure 1. If we define
the local environment of each household as consisting of itself plus the six
households immediately adjacent to it, then each white household will be in a
local environment that is 3/7 black, despite the fact that the overall population is
only 1/3 black. Likewise, each black household inhabits a local environment that
is 6/7 white, despite the fact that the total population is only 2/3 white. In such a
case, the population may be said to be hyper-integrated. A segregation index
should be negative in this case, indicating that the population is more integrated
than expected given the population composition.

6In general, this can occur only if the two points have the same
population composition (�pm¼�qm for all m) and either (1) the points have the
same population density (�p¼ �q), or (2) the points have the same population
composition as their local environments (~��pm ¼ ~��qm ¼ �pm ¼ �qm for all m).
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same composition and are combined into a single unit, segrega-

tion is unchanged (James and Taeuber 1985).7

4. Population density invariance: If the population density �pm of

each group m at each point p is multiplied by a constant factor

c, segregation is unchanged. This is a spatial generalization of the

aspatial size invariance criterion (James and Taeuber 1985).

5. Composition invariance: In general, a measure of spatial evenness

should be independent of the population composition and should

depend only on the distribution of groups in space. More formally,

the composition invariance criterion states that if the proportions of

groups change in the population while the relative distribution of

groups in space remains the same, then segregation is unchanged.

The key to operationalizing this seemingly intuitive concept is to

define what it means for the relative distribution of groups to remain

the same. As Coleman, Hoffer, and Kilgore (1982) point out,

determining whether an index is composition invariant always

‘‘depends on a specific definition of what it means to say that the

distribution [of individuals among organizational units] is ‘kept the

same’ while the [group] proportion changes’’ (p. 177).8

The literature on segregation measurement provides several

different definitions of composition invariance. James and Taeuber

(1985) say that the distribution of individuals in space is the same if

the population density of group m at each point is multiplied by a

constant c and the population density of all other groups at each

point is unchanged.9 Coleman, Hoffer, and Kilgore (1982), however,

7Note that this criterion implies that if �(p, q) is defined so that �(p, q)¼ c
for all points p and q in tract r and �(p, s)¼�(q, s) for all points p and q in tract
r and all points s not in tract r, then a segregation measure that satisfies the
locational equivalence criterion will be unchanged if we consider the entire population
of the tract to be located at a single point within the tract (e.g., the centroid).

8We would like to thank a thoughtful anonymous reviewer who suggested
the importance of clarifying the meaning of the composition invariance criterion.

9Another proposed definition of composition invariance is given by
Gorard and Taylor (2002), who argue that the distribution of individuals in space
is the same if the proportion of group m in each location is multiplied by a
constant (while the total enrollment in each school remains the same). This
definition, however, is not internally consistent, since it is not symmetric—
multiplying group m’s proportion by c implies multiplying each other group’s
composition in each location p by dp¼ (1� c�pm)/(1� �pm). Unless �pm is constant
for all p, then dp varies across p, so composition invariance under this definition is
dependent on which group is considered.
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argue that this is an arbitrary definition of composition invariance;

they imply that any segregation measure can be considered compo-

sition invariant under an appropriate definition of segregation. For

example, if we define segregation as the ratio of actual to potential

pair relations between members of different groups (as Coleman and

colleagues do), then any change in the population composition that

leaves this ratio unchanged should leave a composition invariant

segregation index unchanged. The variance ratio index (V) can

be defined as simply (one minus) the ratio of actual to potential

pair relations between members of different groups, which means

that V is composition invariant under this definition of segrega-

tion (Coleman, Hoffer, and Kilgore 1982).

This definition of composition invariance is somewhat tauto-

logical, of course, since it suggests that if we believe that an index

appropriately measures what we take to be segregation (specifically,

spatial evenness/clustering) in some meaningful sense, then that

measure will be composition invariant by an appropriate definition

of the criterion—a change in the population composition that leaves

what is measured by a particular index unchanged will necessarily

leave segregation unchanged, as measured by that index. As a result,

we take the position that the traditional composition invariance

criterion espoused by James and Taeuber (1985) is less important

than is ensuring that a measure of segregation has a sound con-

ceptual basis. If a segregation index measures exactly that quantity

that we believe defines spatial segregation, then the index will be

composition invariant by definition. That said, we nonetheless

evaluate the measures discussed in the paper against the traditional

(James and Taeuber) composition invariance criterion, in order to

preserve continuity with prior research.

6. Transfers and exchanges: A key criterion for a segregation

measure is a definition of how segregation should change in

response to the movement of individuals in social space. Transfers

and exchanges, as we define them here, are specific types of such

movement. We suggest here spatial extensions of the Reardon and

Firebaugh (2002a) multigroup transfer and exchange criteria; in

addition, we suggest an additional exchange criterion.

* Transfers: If an individual of group m is transferred from

point p to q, and if the proportion of group m in the local
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environments of all points closer to p than q is greater than the

proportion of group m in the local environments of all points

closer to q than p, segregation is reduced. In the aspatial case,

this reduces to the usual transfer criterion (James and Taeuber

1985; Reardon and Firebaugh 2002a).
* Exchanges (Type 1): If an individual of group m from point p is

exchanged with an individual of group n from point q, and if

the proportion of group m in the local environments of all

points closer to p than q is greater than the proportion of

group m in the local environments of all points closer to q

than p, and if the proportion of group n in the local environ-

ments of all points closer to q than p is greater than the

proportion of group n in the local environments of all points

closer to p than q, segregation is reduced. In simpler terms, if an

exchange moves two individuals of different groups to locations

where they are less likely to encounter members of their own

group (and hence, more likely to encounter members of other

groups), then segregation should be reduced. In the aspatial

case, this reduces to the usual exchange criterion (James and

Taeuber 1985; Reardon and Firebaugh 2002a).
* Exchanges (Type 2): If an individual of group m from point p is

exchanged with an individual of group n from point q, and if the

proportion of group m is greater than the proportion of group n

in the local environments of all points closer to p than q, and if

the proportion of group n is greater than the proportion of

group m in the local environments of all points closer to q than

p, segregation is reduced. Although this formulation of the

exchange criterion does not reduce to the familiar exchange

criterion, it has a compelling logic: if two individuals of groups

m and n change places in a way that makes the proportions of

groupsm and nmore similar in the local environments of at least

some places (and leaves them unchanged in all others), while

leaving the proportions of all other groups unchanged every-

where, then segregation should be reduced.10

10Note that in the two-group case, the type 2 exchange criterion is a
special case of the type 1 criterion; in the multigroup case, however, they are
distinct criteria—the conditions of a type 2 exchange can be met without meeting
those of a type 1 exchange, and vice versa.
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7. Additive spatial decomposability: If X spatial subareas are aggregated

into Y larger spatial areas, then a segregation measure should be

decomposable into a sum of within- and between-area components.

8. Additive groupingdecomposability: IfMgroups are clustered inN super-

groups, then a segregation measure should be decomposable into a sum

of independent within- and between-supergroup components.

3. A GENERAL APPROACH TO MEASURING SPATIAL

SEGREGATION

We now turn to developing and evaluating new and proposed meas-

ures of spatial segregation. We begin by describing a new approach to

measuring spatial segregation and use this approach to develop

several measures of spatial exposure and spatial evenness. Concep-

tually, we measure spatial exposure and spatial evenness as follows.

We begin by computing the spatially weighted group composition of

the local environment of each location (or person) in the region of

interest. Typically, we will weight this measure so that locations near

another location contribute more to its local spatial environment than

do more distant locations (a ‘‘distance-decay’’ effect).

To measure spatial exposure, we compute the average compos-

ition of the local environments of members of each group. To measure

spatial evenness, we examine how much variation there is among the

racial compositions of the local environments of everyone living in the

region of interest. If each person’s spatial environment is relatively similar

in racial composition, there is little spatial unevenness; conversely, if there

is considerable variation across persons in the racial composition of their

spatial environments, there is high spatial segregation (unevenness).

Our approach in this paper provides a general framework for

measuring spatial segregation among multiple population groups. This

approach encompasses, as special cases, traditional aspatial measures,

both two-group and multigroup. Our approach here assumes complete

data about the residential locations of individuals (though these data

may be estimated from tract or other aggregated data, of course). Our

approach does not, however, assume any specific functional form

defining spatial proximities between locations. In fact, we deliberately

do not specify a functional form for the spatial proximity function, as

we wish to call attention to the fact that many meaningful definitions

are possible. The flexibility of our approach allows researchers to
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specify a definition of local social environments derived from theor-

etical considerations of patterns of social interaction.

3.1. A General Spatial Exposure Segregation Index

Equation (2) above defines a surface ~��pm, which gives, at each point p in

R, the proportion of the population in the local neighborhood who are

members of group m. This can be interpreted as the exposure to group

m for a person residing at location p. These ~��pm surfaces are the basis of

the class of spatial segregation measures we develop here.

We define the spatial exposure of group m to group n as the

average percentage of group n in the local environments of each

member of group m.

m
~PP�
n ¼

Z
q2R

�qm
Tm

~��qndq: ð4Þ

We likewise define the spatial isolation of group m as simply the

spatial exposure of group m to itself:

m
~PP�
m ¼

Z
q2R

�qm
Tm

~��qmdq: ð5Þ

In the aspatial case, equations (4) and (5) are equivalent to the usual

exposure and isolation indices (Bell 1954; Lieberson and Carter

1982a, 1982b). Although formulated slightly differently, Morgan’s

(1983b) distance-decay interaction index, mPCn, can be seen as a

special case of equation (4), where the spatial proximity function

used to compute ~��qm is defined based on estimated contact rates

between each tract and its surrounding areas.11

11Schnell and Yoav (2001) develop sociospatial isolation measures using
a related approach. Their approach differs from ours, however, in that they
construct ~��pm as a sociospatially weighted average of the �qm’s (see footnote 3)

without weighting for population density. In addition, they average population

compositions in the logistic scale, a technique that makes their measure difficult

to interpret. Finally, they construct sociospatial isolation measures for individ-

uals, rather than populations, though it would be a simple matter to average their

individual isolation measures over all individuals to construct population-average

exposure measures as we do in equations (4) and (5).
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3.2. A General Approach to Measuring Spatial Evenness

Now recall that we define the evenness dimension of spatial segregation as

the extent to which individuals of different groups occupy or experience

different social environments. Given the population density distribution and

the ~��pm exposure surfaces, we know the population density at each loca-

tion and the group proportions in the local environment of each location;

these are all we will need to construct a set of spatial segregation measures.

Knowing the population density (�p) at each location and the

group proportions (the ~��pm’s) in the local environment of each loca-

tion, we can construct a variety of potentially useful multigroup

spatial segregation measures. By substituting the ~��pm’s for the �pm’s

in Reardon and Firebaugh (2002a, table 2), we can derive spatial

generalizations of all their aspatial multigroup segregation measures

(D, G, H, C, P, R). Because the aspatial measures are special cases of

the spatial measures, and because the aspatial criteria described by

Reardon and Firebaugh (2002a) are special cases of the spatial criteria

described above, spatial measures derived this way cannot, in general,

meet any of the spatial criteria that are not met by their aspatial

analogs. We focus here, therefore, on deriving and describing a spatial

version of the entropy-based information theory segregation index

(H), since the aspatial multigroup H has been shown to be preferable

to other aspatial measures on the basis of these criteria (Reardon and

Firebaugh 2002a).

In addition, we describe and evaluate two additional measures—

spatial versions of the dissimilarity index (D) and the relative diversity

index (R). We evaluate the spatial dissimilarity index because the aspatial

dissimilarity index has been used so commonly in segregation research.

We evaluate the spatial relative diversity index because the aspatial

R meets most criteria for an aspatial index (Reardon and Firebaugh

2002a), suggesting that it may make a useful spatial index as well.

3.3. The Spatial Information Theory Segregation Index

Following Theil (1972), we compute the spatially weighted entropy—

a measure of population diversity (see Pielou 1977; White 1986)—at

each point p as

138 REARDON AND O’SULLIVAN

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 18 of 42



~EEp ¼ �
XM
m¼1

~��pm
� �

logM ~��pm
� �

: ð6Þ

This is the entropy of the local environment of p. It is analogous to

the entropy of an individual tract, Er, that is used in the computation

of the aspatial segregation index H (and in fact, if we define the local

environment of p to be tract r, then ~EEp¼Er), except that ~EEp incorpor-

ates spatially weighted information on the racial composition at all

points in R, not only the racial composition of the tract where p is

located.

Now we define the spatial information theory index, denoted ~HH:

~HH ¼ 1 � 1

TE

Z
p2R

�p ~EEpdp; ð7Þ

where E is the overall regional entropy of the total population given

by

E ¼ �
XM
m¼1

�mð Þ logM �mð Þ: ð8Þ

The spatial information theory index, ~HH, is a measure of how much

less diverse individuals’ local environments are, on average, than is

the total population of region R. It will be equal to 1—indicating

maximum segregation—only when each individual’s local environ-

ment is monoracial. If each individual’s local environment has the

same racial composition as the total population, then ~EEp¼E for all p,

and ~HH will be zero—indicating complete integration.

3.4. Additional Spatial Segregation Indices

We define a spatial relative diversity index ~RR as

~RR ¼ 1 �
Z
p2R

�p ~IIp
TI

dp; ð9Þ

where I is the interaction index, a measure of population diversity

(Lieberson 1969; White 1986):
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I ¼
XM
m¼1

�mð Þ 1 � �mð Þ; ð10Þ

and where Ĩp is the spatially-weighted interaction index at point

p:

~IIp ¼
XM
m¼1

~��pm
� �

1 � ~��pm
� �

: ð11Þ

Like ~HH, ~RR is a measure of how much less diverse individuals’ local

environments are, on average, than is the total population of region

R.12

Finally, we define a spatial dissimilarity index as

~DD ¼
XM
m¼1

Z
p2R

�p
2TI

~��pm � �m
�� ��dp : ð12Þ

Unlike its aspatial analog, the spatial dissimilarity index cannot be

interpreted as the proportion of the population who would have to

12Unlike in the aspatial case, ~RR is not easily related to the ~PP* spatial
exposure indices. In the aspatial case, in a two-group population, we have
(Reardon and Firebaugh 2002a):

1 � R ¼ mP
�
n

�n
¼ nP

�
m

�m
:

In general, the spatial version of these equalities does not hold, since the spatial
versions of the quantities above are given by

1 � ~RR ¼
Z
p2R

�p~��pm~��pn
T�m�n

dp

m
~PP�
n

�n
¼

Z
p2R

�p�pm~��pn
T�m�n

dp

n
~PP�
m

�m
¼

Z
p2R

�p~��pm�pn
T�m�n

dp:

These are equal only if ~��pm ¼ �pm holds for all p and m (see footnote 3).
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move to achieve complete integration. However, it can be interpreted

as a measure of how different the composition of individuals’ local

environments are, on average, from the composition of the popula-

tion as a whole.

3.5. Prior Proposed Measures of Spatial Segregation

As we noted above, we are not the first to propose measures of spatial

segregation. Table 1 summarizes proposed spatial segregation meas-

ures. Those that rely explicitly on tract boundaries and contiguity

patterns are noted in column 3; these measures will each be necessarily

susceptible to MAUP issues. The other indices are computed, in

principle, from more general functions of spatial or social distance,

although tract boundaries and contiguity are generally used to

approximate spatial distance.

Among the proposed measures of spatial evenness, most are

modifications of the aspatial dissimilarity indexD (Jakubs 1981; Morgan

1982, 1983a; Morrill 1991; O’Sullivan and Wong 2004; Waldorf

1993; Wong 1993; Wong 1998); these generally incorporate some

spatial contiguity weight into the computation of D, or characterize

the distance between tracts in terms of ‘‘relocation efforts.’’ As each

of these measures is a generalization of D, they will necessarily fail

to meet any of the criteria that the aspatial D fails to meet (Reardon

and Firebaugh 2002a). In particular, they fail to meet the exchange

criterion and the decomposition criteria. Moreover, most of these

are based explicitly on tract boundaries, and so are susceptible to

MAUP issues. Because of these shortcomings, we do not consider

these measures further here.

Morgan (1983b:215) defines a symmetric spatial segregation

index IC2 that is a spatial analog to the variance ratio index or the

standardized exposure index. However, IC2 is well-defined only for

spatial proximity functions where ~��pm ¼ �pm holds for all p and m,

since otherwise the standardized versions of the exposure indices are

not, in general, equal (see footnote 9). When IC2 is well-defined, it can

be seen as a special case of our relative diversity index ~RR; thus we do

not consider IC2 further here.

Among the other proposed measures of spatial evenness, the

remainder (save our new measures) do not correspond to any known
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aspatial measure. White (1983) proposed a spatial proximity index to

measure spatial segregation; Grannis (2002) proposed a multigroup

version of this index, which we will denote as SP. The index is a

measure of the average spatial proximity between two members of the

same group divided by the average proximity between two members

of the population. In principle, this measure does not depend on tract

boundaries (White uses tract boundaries in estimating proximities; the

measure would, however, be independent of tract boundaries if we

had information on individuals’ exact locations). Moreover, it has an

intuitive appeal as a measure of spatial segregation. We consider SP a

potentially useful measure of spatial segregation, and evaluate it

alongside our new measures later in this paper. In our notation, the

White/Grannis spatial proximity index is defined as

SP ¼
XM
m¼1

�mPmm
Ptt

; ð13Þ

where Pmm, the average proximity between two members of group m,

is defined as

Pmm ¼ 1

T2
m

Z
p

Z
q

�pm�qm� p; qð Þdqdp

¼ 1

T2
m

Z
p

�pm~��pm�pdp:

ð14Þ

Ptt is defined similarly. White suggests using a decreasing function of

the distance between p and q for the proximity function � here,

though in principle, any desired proximity function could be used in

equation (14) (Grannis 2002; ; White 1983).

Scholars have suggested several additional spatial evenness

measures. Wong’s deviational ellipse (1999) introduces the novel

idea of comparing the overall spatial distribution of different popula-

tion subgroups. However the measure is problematic because the

deviational ellipse provides only a very generalized approximation

of subgroup spatial distributions. In more recent work O’Sullivan

and Wong (2004) use a density estimation method to approximate

and compare the spatial distributions of two population subgroups.
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However, because the resulting measure is a spatial generalization of

D, this approach will fail to meet a number of the criteria under

consideration. Finally, Frank (2003) suggests a segregation measure

based on the spatial autocorrelation of tract compositions. Like all

other measures that depend explicitly on tract boundary definitions,

however, it is susceptible to MAUP issues. Thus, of the proposed

spatial evenness measures, the White/Grannis spatial proximity index

SP appears the most promising candidate for satisfying the spatial

segregation criteria above.

There are far fewer candidates for a spatial exposure index. As

we noted above, Morgan’s PC* is a special case of our more general

proposed spatial exposure index, so we will not evaluate it separately

here (Morgan 1983b). We are not aware of any other proposed spatial

exposure indices.

4. EVALUATION OF THE SPATIAL SEGREGATION INDICES

We now turn to evaluating the indices against the criteria articulated

above. We evaluate here four measures of spatial evenness ( ~HH, ~DD, ~RR,

and SP), and one measure of spatial exposure ( ~PP*).

Scale Interpretability. Each of the three evenness measures we

derive— ~HH, ~DD, and ~RR—meets the scale interpretability criterion.

Each has a maximum of 1, obtained under complete segregation, is

equal to zero if each local environment has a composition equal to

that of the whole population, and is negative in the case of hyperinte-

gration. The spatial proximity index has no theoretical maximum and

is equal to 1 under perfect evenness, with values less than one indicat-

ing hyperintegration (White 1983). The lack of a theoretical maximum

makes comparative studies using SP potentially difficult. The spatial

exposure index is, by definition, bounded between 0 and 1.

Arbitrary Boundary Independence. Each of the five indices is com-

puted based on population density information at each point; as a

result, each of the indices is free of MAUP issues in principle, though

the estimation of population density information from aggregated

(tract) data may still lead to some MAUP issues, but these are due
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to data collection methods rather than segregation computation

methods.

Population Density and Location Equivalence. Both of these criteria

are easily assessed using simple algebra. Like their aspatial counter-

parts, all five indices satisfy the population density invariance criteria.

Each of the measures except SP meets the location equivalence

criterion.

Composition Invariance. As we noted above, the composition invari-

ance criterion as stated by James and Taueber (1985) may be inappro-

priate, since it rests on a particular definition of what it means for

the distribution of individuals in space to remain the same as the

population composition changes. Nonetheless, it is useful to evaluate

the indices against the James and Taueber formulation of composition

invariance for the sake of continuity with prior work. When we do so,

we find that, since D, H, and R do not satisfy the criterion in

the aspatial multigroup case, their spatial analogs likewise do not

meet it (though ~DD is composition invariant in the two-group case).

Likewise, simple algebra shows that the spatial proximity index is not

composition invariant either. The criterion does not apply to the

spatial exposure index ~PP*.

Although none of ~HH, ~DD, ~RR, and SP are composition invariant

(by the James and Taeuber definition) in the general spatial multi-

group case, we have conducted a preliminary set of exploratory

simulation analyses in order to determine whether one or more of

the indices approximates composition invariance. In general, the

behavior of each of the indices with respect to a change in the

population composition of the type suggested by James and Taueber

is complex, particularly when one or more groups makes up a small

portion of the population and/or when the group whose size is chan-

ging is highly segregated from some groups and not highly segregated

from others. Nonetheless, a series of exploratory simulations analogous

to those conducted by James and Taeuber (1985:16–18) show that ~HH
and ~DD are less sensitive to changes in the population composition, in

general, than are ~RR and SP.

It is worth noting that a failure to meet the James and Taueber

composition invariance criterion does not imply that a measure may

not be composition invariant by some other definition. For example,
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if the population composition changes but if the ratio of the average

diversity (as measured by the entropy function E) of individuals’ local

environments to the total diversity of the population remains con-

stant, then ~HH will be composition invariant under a corresponding

definition of invariance. Finally, failure to meet a composition invar-

iance criterion indicates that a segregation measure is affected by the

population composition; this does not, however, imply that the meas-

ure is a measure of spatial exposure, rather than of spatial evenness. A

measure of exposure should increase when the proportion of the

group that others are exposed to grows in the population. But, as

James and Taueber (1985) show, the aspatial H and V (as well as the

spatial ~HH and ~RR) both may increase or decline in response to increases

in one group’s share of the population, indicating that their respon-

siveness to population composition is not due to a confounding of

exposure and evenness measurement.

Transfers and Exchanges.13

* Transfers: None of the spatial segregation measures we describe

here meet the transfer criterion in the general spatial case.
* Exchanges: In the most general case, none of the evenness measures

meet the type 1 exchange criterion, and only ~HH meets the type 2

exchange criterion. Several of the measures, however, meet the

exchange criteria if the region R is symmetric under �. We say that

points p and q are symmetric if there is a one-one mapping between the

set of points closer to p than q and those closer to q than p, and if

corresponding points and their local environments have similar

population density ratios. This condition is unlikely to be met com-

pletely, but may be approximated in real residential patterns. (See

Section A.1 in the Appendix for a more precise definition and related

discussion.)

Both ~HH and ~RR meet the type 1 exchange criterion under

conditions of spatial symmetry. Moreover, while only ~HH meets the

type 2 exchange criterion in the most general case, ~RR also meets the

criterion when the region is symmetric under �.

Under conditions of spatial symmetry, the spatial dissimilarity

index ~DD, like its aspatial counterpart, satisfies only a weak version of

13See Sections A.2 and A.3 in the Appendix for all proofs.
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each of the exchange criteria. An exchange that moves a group m

member away from locations with higher proportions of groupm and

nearer to points with lower proportions of groupmwill never result in

an increase in ~DD. In most cases, however—as long as there is set of

symmetric points (see Section A.1 in the Appendix) s and s0 inR such

that ~��sm > �m > ~��s0m or ~��sn < �n < ~��s0n—a type 1 exchange will

register an appropriate decrease in ~DD. Likewise, as long as there is

some point s closer to p than q such that ~��sm > ~��sn or some point s0

closer to q than p such that ~��s0n > ~��s0m, then a type 2 exchange will

register an appropriate decrease in ~DD.

The spatial proximity index SP fails to meet either of the

exchange criteria, even under conditions of spatial symmetry.

Additive Spatial Decomposability. Suppose a spatial region R is

subdivided into K subregions. In the aspatial case, any rearrange-

ment of individuals within subregion k will not affect segregation

within any other subregion; nor will it affect the between-subregion

segregation level. In this case, Reardon and Firebaugh (2002a)

define a segregation measure as organizationally decomposable if

it can be written as a sum of Kþ 1 independent components—a

between-subregion component and K within-subregion components,

with each of the K within-subregion components indicating the

amount by which total segregation would be reduced if segregation

within subregion k were eliminated by rearranging individuals

within k while leaving the location of all other individuals outside

k unchanged.

An additive spatial decomposition is not so neatly defined,

since rearranging individuals within subregion k may change the

spatial environments of individuals in other subregions. As a result,

the between- and within-subregion components of segregation are not

necessarily independent. Nonetheless, we can define meaningful spa-

tial decompositions of both ~RR and ~HH that incorporate a spatial inter-

action term that accounts for the spatial interaction between locations

in different subregions.

To describe the spatial decomposition of ~HH, we first require a

refinement to our earlier notation. For some region S, define ~EEpjS as the

spatial entropy at point p as defined in equation (6), except that the ~��pm’s

are computed from equations (1) and (2) using only the points in region S.
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In this notation, ~EEp as defined in equation (6) would be written ~EEpjR,

since all points in region R might contribute to the spatial environment of

point p. Now we can write ~HH as the sum of three components:

~HH ¼
X
k2R

tk

TE
E � Ekð Þþ

X
k2R

Z
p2k

�p
TE

~EEpjk � ~EEpjR
� �

dp

2
64

3
75þ

X
k2R

tkEk

TE

Z
p2k

�p
tkEk

Ek � ~EEpjk
� �

dp

ð15Þ

The first term on the right-hand side of equation (15) is simply the

aspatial segregation between the K subregions (see Reardon and

Firebaugh 2002a). The integral in the third term on the right-hand

side is the spatial segregation within subregion k, ignoring points

outside of k. We can rewrite equation (15) as

~HH ¼ HK þ
X
k2R

Z
p2k

�p
TE

~EEpjk � ~EEpjR
� �

dp

2
64

3
75þX

k2R

tkEk

TE
~HHk: ð16Þ

The middle term is an interaction term that reflects the contribution

to spatial segregation that results from the spatial proximity of points

within different subareas. In general, for a given subregion k, the

integral will be positive if, on average, subregions outside of k

decrease the diversity of the local environments of individuals within

subregion k, and negative if they increase it.

It is useful to consider a few special cases of equation (16). First,

suppose that each population group is evenly distributed within each

subregion k—this would be the case if, for example, the subregions

were census tracts and we assumed that the population of each tract

were evenly distributed throughout the tract. In this case, ~HHk¼ 0 and
~EEpjk¼Ek for each k. Then ~HH is simply the sum of the aspatial segrega-

tion among the tracts and a between-tract spatial segregation term:

~HH ¼ HK þ
X
k2R

Z
p2k

�p
TE

Ek � ~EEpjR
� �

dp

2
64

3
75: ð17Þ
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Second, consider a special case where the spatial proximity of

points in separate subregions is zero. This is the case, of course, for

aspatial measures, but it also might be the case if, for example, a city

were divided into distinct subareas through natural or manmade

barriers—rivers, major highways, and the like—across which there were

no spatial interaction. In this case, the interaction term would be zero, and
~HH can be written as the sum of a between-subarea aspatial segregation

component and K within-subarea spatial segregation measures:

~HH ¼ HK þ
X
k2R

tkEk

TE
~HHk: ð18Þ

Finally, suppose that the K subregions are large compared to the size

of the local spatial environments of individuals. Then, for most indi-

viduals—except for those located near the boundaries between sub-

regions—we will have ~EEpjk� ~EEpjR. As a result, the spatial interaction

term will be relatively small, and the decomposition in equation (18)

will hold approximately.

The spatial relative diversity index ~RR can be decomposed in the

same way as ~HH, by substituting Ĩ for ~EE in equations (15) through (18).
~DD, however, like its aspatial counterpart, cannot be meaningfully

decomposed into between- and within-subregion components. Nor

are we able to construct a decomposition of SP.

The spatial exposure index, however, does have a useful spatial

decomposition. Using similar notation as in equation (16), we can write

m
~PP�
n ¼

X
k2R

tkm

Tm
m
~PP�
n


 �
k
þ
X
k2R

Z
p2k

�pm
Tm

~��pnjR � ~��pnjk
� �

dp

2
64

3
75: ð19Þ

The first term in the right-hand side of the equation is a weighted average

of the spatial exposure within each subarea. The second term is an

interaction term that reflects the contribution to spatial exposure that

results from the spatial proximity of points within different subareas.

Additive Grouping Decomposability. Following Reardon and

Firebaugh (2002a), a spatial segregation index ~SS meets the grouping

decomposability criterion if we can write
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~SS ¼ ~SSN þ
XN
n¼1

g ~SSn
� �

; ð20Þ

where ~SSN is the segregation calculated among the N supergroups, ~SSn is

the segregation among the groups making up supergroup n, and g is a

strictly increasing function on the interval [0,1] with g(0)¼ 0. As in

the aspatial case, only ~HH yields a meaningful grouping decomposition.

Because the between-supergroup decomposition of H depends only on

the decomposition of E, and because the ~��pm’s sum to 1 for all p; the

decomposition of ~HH into between- and within-supergroup compon-

ents has the same form as the aspatial H:

~HH ¼ ~HHN þ
XN
n¼1

tnEn

TE
~HHn: ð21Þ

Table 2 summarizes the compliance of the spatial segregation

measures with the criteria we describe. Of the four spatial evenness

measures, the spatial proximity index SP is clearly the least satisfac-

tory, as it fails to meet almost every criterion. The spatial information

theory index ~HH appears the most satisfactory, as it satisfies the

exchange criteria in the widest range of cases and is also the only

index that has both a meaningful spatial and grouping decomposition.

Of the remaining two, ~DD is arguably less satisfactory than ~RR, as ~RR
meets the exchange criteria in a wider range of cases and can also be

spatially decomposed.

5. DISCUSSION AND CONCLUSION

Despite the existence of a number of proposed measures of spatial

segregation, such measures have not been widely used in residential

segregation research. In fact, a reading of the existing spatial segrega-

tion literature provides little guidance about which of the many

proposed measures are most useful. In this paper, we have—at the

risk of further cluttering an already cluttered field—developed several

new measures of spatial segregation, based on a new spatial proximity

approach. Several key features of our approach are notable. First, our

approach avoids, in principle, MAUP issues by using point-to-point
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proximity functions rather than tract contiguity matrices. Second, our

approach is nonspecific regarding the choice of a spatial proximity

function. This enables (requires, actually) researchers to specify their

underlying assumptions about socio-spatial proximity, and it facili-

tates research that compares segregation levels based on different

theoretical bases for defining spatial proximity. Further, our

approach yields, as special cases, traditional aspatial segregation

measures (both two-group and multigroup) and makes clear the

assumptions about spatial proximity inherent in such measures.

Finally, our approach yields measures of both spatial exposure/isolation

and spatial evenness/clustering.

In addition to developing a new set of spatial segregation

measures, we review and evaluate all previously proposed measures

of spatial evenness and exposure as well as our new measures. Here

we conclude that the spatial information theory index ~HH is the best of

the spatial evenness measures, when judged against the criteria we

have outlined. Likewise, we conclude that the spatial exposure/isolation

index ~PP*—which is a spatial generalization of the familiar P* exposure

and isolation index—is a satisfactory measure of spatial exposure. We

suggest that researchers rely on these measures in future research in

order to ensure comparability across studies.

We do not, however, specify or recommend a particular prox-

imity function for use in computing the measures. In fact, it seems

likely that research that compares segregation levels of ~HH based on

different proximity functions could be useful in understanding the

processes that organize residential space. For example, parallel studies

of a number of cities might reveal that using a simple fast (short)

distance decay formulation for the proximity function results in a

different rank-ordering of cities by segregation levels than does using

a proximity function with a slower distance decay characteristic. Inter-

pretation of such results would indicate something about the geogra-

phical scale at which segregation occurs in the cities in question.

While ~HH and ~PP* are, in principle, very satisfactory spatial

segregation indices, several important issues remain in operationalizing

and computing these measures. The first is that although our

approach relies on complete data about individual residential loca-

tions, such data are rarely available, though they can be estimated

from readily available tract data using a variety of methods. The

simplest method would be to assume an even population density
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within each tract, though this will result in sharp discontinuities in

density at tract edges. Alternatively, spatial smoothing of population

can be performed using various methods: kernel density estimation

(Silverman 1986); group-specific pycnophylactic smoothing, which

redistributes each population group within tracts such that tract totals

are honored but population groups are moved toward neighboring

tracts with large populations of the same group (Tobler 1979); or

dasymetric mapping, which uses street networks or zoning patterns to

estimate population densities (Mennis 2003). Although all of these

methods are computationally intensive, they can be readily automated

within typical GIS software packages. We are currently developing a

set of tools that will allow researchers to estimate smooth population

density surfaces using these methods and to use these smooth density

surfaces in the computation of spatial segregation measures.

A second practical issue in our approach is that it requires the

numerical evaluation of integrals over the study region R. In practice,

this means dividing R into small cells for computational purposes, but

it is unclear how sensitive the resulting measures of segregation will be

to the choice of cell size. A third issue arises at edges of a study region

R. Omitting data from outside the study region (say, a city, or

metropolitan area), may be convenient (or necessary, if data are not

available), but this may affect the estimation of the population density

and racial composition for points near the edge of the study region,

which will in turn affect the measured segregation.

The scale of the chosen proximity function relative to the scale

of cells, tracts, and the study region is likely to be the critical factor

determining how sensitive computed segregation measures are to vari-

ation, respectively, in the density estimation method, the choice of cell

size, and the approach to treating edge conditions. Future work should

determine how sensitive ~HH and ~PP* are to choices regarding these issues.

An additional issue pertains to the potential need to use com-

plex spatial proximity functions. It may be relatively simple to use a

‘‘bounded Gaussian’’ distance-decay spatial proximity function—a

proximity function that is strictly a decreasing function of the Euclid-

ean distance between two points and that goes to zero at some defined

distance; such a function is computationally efficient, because it is

defined identically at each point and because the cut-off distance

removes the necessity to perform numerical integration over the entire

study region R. Such a function, regardless of its precise mathematical
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form (Gaussian, negative exponential, negative power law, etc.) has a

certain intuitive appeal but nonetheless has only weak theoretical

support and no supporting empirical evidence. It may be thought of

as accounting for the varied behavior of individuals by aggregating

many individual life-spaces into an overall average.

A more realistic spatial proximity function might take into

account obstacles and discontinuities in the spatial fabric, such as

highways or rivers. These will disrupt the neat mathematics of a

bounded-Gaussian proximity function, however, and call for special

treatment, with the proximity of locations on opposite sides of bound-

aries being set much lower than their simple Euclidean separation

distance would dictate. Conversely ‘‘promoters’’ or channels for

sociospatial interaction, such as street networks and public transportation

services, would be treated in the opposite sense, increasing the

proximity of locations connected by them (Grannis 2002).

While our approach to measuring spatial segregation enables

us to account for complicated patterns of spatial proximity, such

patterns do complicate the implementation of the measures, since

special programming in GIS software is necessary to incorporate

them. Moreover, any proximity function that is not the same at all

locations requires the representation of the function by a (very large)

interaction matrix that records the proximity between every pair of

locations in the study region. Calculation and manipulation of such a

matrix will impose significant computational burdens on any imple-

mentation of the proposed measure. Given the complexity of pro-

gramming complex, user-defined spatial proximity functions for a

number of locations, we expect that most users of these measures

will initially prefer to use some simple distance-decay function until

software tools are available to automate the use of more complex

spatial proximity functions.

Finally, the measures we have developed here apply most

obviously to the case of spatial residential racial segregation. In prin-

ciple, however, we can extend this approach to measure segregation

according to any population characteristic. For example, we could

generate measures of spatial income segregation simply by computing

some income variation statistic (such as the variance) within each local

environment and then computing a measure of the variation in this

statistic across all points in the region. In addition, we can extend this

approach to measure other types of segregation, simply by defining an
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appropriate proximity function. For example, we can measure the seg-

regation of social networks by defining some social proximity function

that indicates how near to one another any two individuals are within a

social network (see Reardon and Firebaugh 2002b). Because of the

generality of the measures with regard to the proximity function, our

approach here may yield useful measures of social segregation in any

domain, so long as an appropriate social proximity function is specified.

APPENDIX A: COMPLIANCE OF THE MEASURES WITH

THE TRANSFER AND EXCHANGE CRITERIA

A.1. The Spatial Symmetry Condition

To evaluate the conditions under which a spatial segregation index

meets the exchange criterion, we first provide a definition of spatial

symmetry. Given a spatial proximity function �(p, q) that is defined

for all points p, q2R, we say that R is symmetric under � if for each

pair of distinct points p, q2R, we can divide R into three subregions,

Rp, Rq, and R0, where �(s, p)>�(s, q) for all s2Rp; �(s, q)>�(s, p)

for all s2Rq; and �(s, p)¼�(s, q) for all s2R0, and such that for each

point s2Rp there exists a unique corresponding point s02Rq such that

�(s, p)��(s, q)¼�(s0, q)��(s0, p) and �s
~��s
¼ �s0

~��s0
. If we denote

�s p; qð Þ ¼ �s
~��s

� s; pð Þ � � s; qð Þ½ �; ðA � 1Þ

then we have

�s p; qð Þ ¼ ��s0 p; qð Þ ðA � 2Þ

for all symmetric points s and s0 in R.

Several examples of spatial symmetry are notable. First, in the

usual aspatial case, the region R is divided into distinct subregions

(tracts), and �(p, q) is defined such that �(p, q)¼ c if p and q are in

the same subregion and �(p, q)¼ 0 otherwise. It is simple to show

that R is symmetric under � in this case. To see this, consider the case

where p and q are in different tracts. Then Rp consists of the tract

containing point p, Rq consists of the tract containing point q, and R0 is

the remainder of R. Now if we assume the populations in both Rp
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and Rq are both located at a single point (this will not change

segregation as measured by any index satisfying the locational

equivalence criterion—see footnote 4), then the conditions for sym-

metry are met.

A second example of spatial symmetry results if region R

extends infinitely in all directions, with constant population density

(in which case �s ¼ ~��s for all s), and if �(p, q) depends only on the

Euclidean distance between points p and q. Finally, if R is large

compared to the scale of local environments defined by �, and if the

population density changes relatively little over distances comparable

to the scale of local environments, then �s � ~��s for all s in R and R is

approximately spatially symmetric under �.

A.2. Evaluation of the Exchange Criteria

We can evaluate each index’s compliance with the principles of trans-

fers and exchanges by taking the derivative of the index with respect

to a transfer or exchange x. Moreover, because an exchange consists

of a pair of complementary transfers, failure to satisfy the type 1

exchange criterion implies that a measure does not satisfy the transfer

criterion. Likewise, a measure that meets the transfer criterion will

necessarily meet the type 1 exchange criterion.

We first evaluate the behavior of the indices with respect to an

exchange. When x involves the exchange of a member of group m at

point p with a member of group n at point q, then the derivative of ~HH
with respect to x is

d ~HH

dx
¼ 1

TE

Z
s2R

�s p; qð Þ ln
~��sn
~��sm

ds: ðA � 3Þ

Now we divide the region R into three subregions, Rp, Rq, R0, such

that �(s, p)>�(s, q) for all s2Rp; �(s0, q)>�(s0, p) for all s02Rq; and

�(r, p)¼�(r, q) for all r2R0. Now

d ~HH

dx
¼ 1

TE

Z
s2Rp

�s p; qð Þ ln
~��sn
~��sm

dsþ
Z

s02Rq

�s0 p; qð Þ ln
~��s0n
~��s0m

ds0

2
64

3
75: ðA � 4Þ
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Now suppose that ~��sm > ~��sn and ~��s0m < ~��s0n for all s2Rp and all s02Rq.
In this case, equation (A-4) yields d ~HH

dx
< 0, so ~HH satisfies the type 2

exchange criterion.

In general, ~HH does not satisfy the type 1 exchange criterion,

since equation (A-4) can be negative under conditions of a type 1

exchange. If R is symmetric under �, however, then we can exploit the

one-to-one mapping of points in Rp and Rq to write equation (A-4) as

d ~HH

dx
¼ 1

TE

Z
s2Rp

�s p; qð Þ ln
~��sn~��s0m
~��s0n~��sm

� �
ds; ðA � 5Þ

where s0 is the point in Rq corresponding to the point s in Rp. For

every point s2Rp, �(s, p)��(s, q)> 0. When ~��sm > ~��s0m and

~��sn < ~��s0n, then equation (A-5) yields d ~HH
dx

< 0, so ~HH satisfies the type
1 exchange criterion if R is symmetric under �.

The derivative of ~RR with respect to an exchange x is

d ~RR

dx
¼ 2

TI

Z
s2R

�s p; qð Þ �m � ~��smð Þ � �n � ~��snð Þ½ �ds ðA � 6Þ

Note that, unlike ~HH, the condition that ~��sm > ~��sn and ~��s0m < ~��s0n for

all s2Rp and all s02Rq is not sufficient to ensure that ~RR< 0, so ~RR does

not, in general, satisfy the type 2 exchange criterion. However, under

the condition of spatial symmetry, we can write equation (A-6) as

d ~RR

dx
¼ 2

TI

Z
s2Rp

�s p; qð Þ ~��s0m � ~��smð Þ þ ~��sn � ~��s0nð Þ½ �ds: ðA � 7Þ

When either ~��sm > ~��s0m and ~��sn < ~��s0n or ~��sm > ~��sn and ~��s0m < ~��s0n,
then equation (A-7) yields d

~RR
dx

< 0, so ~RR satisfies both exchange criteria

if R is symmetric under �.

The derivative of ~DD with respect to an exchange x is

d ~DD

dx
¼ 1

2TI

Z
s2R

�s p; qð Þ zsn � zsmð Þds; ðA � 8Þ

where
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zsk ¼
1 if ~��sk > �k
�1 if ~��sk < �k
0 if ~��sk ¼ �k:

8<
:

In the aspatial case, D satisfies only a weak form of the type 1

exchange criterion; the specified exchange may not reduce segrega-

tion, but will never increase it (Reardon and Firebaugh 2002a). In the

spatial case, however, ~DD does not satisfy even this weak form of the

type 1 exchange criterion, as the expression in equation (A-8) may be

positive in some cases. Under the spatial symmetry condition, how-

ever, equation (A-8) can be written

d ~DD

dx
¼ 1

2TI

Z
s2Rp

�s p; qð Þ zsn � zsmð Þ � zs0n � zs0mð Þ½ �ds: ðA � 9Þ

When either (1) ~��sm > ~��s0m and ~��sn < ~��s0n, or (2) ~��sm > ~��sn and

~��s0m < ~��s0n is true, then equation (A-9) yields d ~DD
dx � 0, so ~DD satisfies a

weak form of both exchange criteria if R is symmetric under �.

If we assume that �p¼�q¼� for all p, q2R, then the deriva-

tive of SP with respect to an exchange x is

dSP

dx
¼ 2�

TmTnPtt
�n ~��q~��qm � ~��p~��pm
� �

þ �m ~��p~��pn � ~��q~��qn
� �
 �

ðA � 10Þ

In general, this quantity can be positive under the conditions of

either exchange criterion. This is true for both the spatial and

aspatial cases and for the two-group and multigroup versions of

the index, so SP does not satisfy either of the exchange criteria in

any case.

A.3. Evaluation of the Transfer Criterion

We next examine the behavior of the indices with respect to a transfer

x of a person of group m from point p to q. Because ~HH and ~RR meet the

first exchange criterion only when R is symmetric under �, we need

only evaluate ~HH and ~RR with respect to the transfer criterion in the case

when R is symmetric under �. In this case, we have
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d ~HH

dx
¼ 1

TE

Z
s2Rp

�s p; qð Þ ~EEs0 � ~EEs
� �

þ ln
~��s0m
~��sm

� �
dsþ 1

TE
~EEp � ~EEq

� �

ðA � 11Þ

d ~RR

dx
¼ 2

TI

Z
s2Rp

�s p; qð Þ ~IIs0 � ~IIs
� �

þ ~��s0m � ~��smð Þ

 �

dsþ 1

TI
~IIp � ~IIq

� �

ðA � 12Þ

Both of these quantities may be positive when ~��sm > ~��s0m for all s2Rp
and all s02Rq, so neither ~HH nor ~RR meets the transfer criterion.

Because the aspatial D satisfies the transfer criterion only in the

two-group case (Reardon and Firebaugh 2002a) and the spatial ~DD
satisfies only a weak form of the type 1 exchange criterion, and then

only under conditions of spatial symmetry, we need only evaluate ~DD
with regard to the transfer criterion in the two-group case under

conditions of spatial symmetry. The derivative of ~DD with respect to

a transfer x in this case is

d ~DD

dx
¼ �1

TI

Z
s2Rp

�sðp; qÞ½ð1 � ~��smÞzsm � ð1 � ~��s0mÞzs0m�ds

2
64

þ ~��pm � �m
� �

zpm � ~��qm � �m
� �

zqm
�
;

ðA � 13Þ

where zpm and zqm are as in equation (A-8). This expression can be

either positive or negative under the transfer criterion conditions, so
~DD does not meet the transfer criterion.

Because the spatial proximity index SP does not meet the exchange

criterion in any case, we know it will not meet the transfer criterion.
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géographie 134.

160 REARDON AND O’SULLIVAN

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 40 of 42



Bell, W. 1954. ‘‘A Probability Model for the Measurement of Ecological Segrega-

tion.’’ Social Forces 43:357–364.

Coleman, James, Thomas Hoffer, and Sally Kilgore. 1982. ‘‘Achievement and

segregation in secondary schools: A further look at public and private school

differences.’’ Sociology of Education 55:162–82.

Dent, Borden D. 1999. Cartography: Thematic Map Design. Boston, MA:

McGraw-Hill.

Frank, Andrea I. 2003. ‘‘Using Measures of Spatial Autocorrelation to Describe

Socio-economic and Racial Residential Patterns in US Urban Areas.’’

Pp. 147–62 in Socio-economic Applications of Geographic Information Science,

Innovations in GIS, edited by D. Kidner, G. Higgs, and S. White. London:

Taylor and Francis.

Gorard, Stephen, and Chris Taylor. 2002. ‘‘A Comparison of Measures in Terms

of ‘Strong’ and ‘Weak’ Compositional Invariance.’’ Sociology 36:875–95.

Grannis, Rick. 2002. ‘‘Discussion: Segregation Indices and Their Functional

Inputs.’’ Pp. 69–84 in Sociological Methodology, Vol. 32, edited by Ross

M. Stolzenberg. Boston, MA: Blackwell Publishing.

Jakubs, John F. 1981. ‘‘A Distance-Based Segregation Index.’’ Journal of Socio-

economic Planning Sciences 15:129–36.

James, David R. and Karl E. Taeuber. 1985. ‘‘Measures of Segregation.’’ Pp. 1–32

in Sociological Methodology, Vol. 14, edited by Nancy Brandon Tuma. San

Francisco, CA: Jossey-Bass.

Lieberson, Stanley. 1969. ‘‘Measuring Population Diversity.’’ American Socio-

logical Review 34:850–62.

Lieberson, Stanley, and Donna K. Carter. 1982a. ‘‘A Model for Inferring the Volun-

tary and Involuntary Causes of Residential Segregation.’’ Demography 19:511–26.

———. 1982b. ‘‘Temporal Changes and Urban Differences in Residential Segre-

gation: A Reconsideration.’’ American Journal of Sociology 88:296–310.

Longley, P., M. F. Goodchild, D. J. Maguire, and D. W. Rhind. 2001.

Geographic Information Systems and Science. New York: Wiley.

Massey, Douglas S., and Nancy A. Denton. 1988. ‘‘The Dimensions of Residen-

tial Segregation.’’ Social Forces 67:281–315.

Mennis, J. 2003. ‘‘Generating Surface Models of Population Using Dasymetric

Mapping.’’ Professional Geographer 55:31–42.

Morgan, Barrie S. 1982. ‘‘An Assessment of Some Technical Problems in the

Comparative Study of Residential Segregation.’’ Transactions–Institute of British

Geographers 7:227–32.

———. 1983a. ‘‘An Alternate Approach to the Development of a Distance-Based

Measure of Racial Segregation.’’ American Journal of Sociology 88:1237–49.

———. 1983b. ‘‘A Distance-Decay Interaction Index to Measure Residential

Segregation.’’ Area 15:211–16.

Morrill, R. L. 1991. ‘‘On the Measure of Spatial Segregation.’’ Geography

Research Forum 11:25–36.

Openshaw, S., and P. Taylor. 1979. ‘‘A Million or So Correlation Coefficients:

Three Experiments on the Modifiable Area Unit Problem.’’ Pp. 127–44 in

Statistical Applications in the Spatial Sciences, edited by N. Wrigley. London: Pion.

MEASURES OF SPATIAL SEGREGATION 161

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 41 of 42



O’Sullivan, David, and David W. S. Wong. 2004. ‘‘A Density Surface-Based

Approach to Measuring Spatial Segregation.’’ Presented at the Annual Meeting

of the Association of American Geographers, March 14–19, Philadelphia, PA.

Pielou, E. C. 1977. Mathematical Ecology. New York: Wiley.

Reardon, Sean F., and Glenn Firebaugh. 2002a. ‘‘Measures of Multigroup

Segregation.’’ Pp. 33–67 in Sociological Methodology, Vol. 32, edited by

Ross M. Stolzenberg. Boston, MA: Blackwell Publishing.

———. 2002b. ‘‘Response: Segregation and Social Distance—A Generalized

Approach to Segregation Measurement.’’ Pp. 85–101 in Sociological Metho-

dology, Vol. 32, edited by Ross M. Stolzenberg. Boston, MA: Blackwell

Publishing.

Schnell, Izhak, and Benjamini Yoav. 2001. ‘‘The Sociospatial Isolation of Agents

in Everyday Life Spaces as an Aspect of Segregation.’’ Annals of the Associ-

ation of American Geographers 91:622–36.

Schwartz, Joseph, and Christopher Winship. 1980. ‘‘The Welfare Approach to

Measuring Inequality.’’ Pp. 1–36 in Sociological Methodology, Vol. 9, edited

by Karl F. Schvessler. San Francisco, CA: Jossey-Bass

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis.

London: Chapman and Hall.

Theil, Henri. 1972. Statistical Decomposition Analysis, Vol. 14, edited by H. Theil.

Amsterdam: North-Holland Publishing Company.

Tobler, Waldo R. 1979. ‘‘Smooth Pycnophylactic Interpolation for Geographical

Regions.’’ Journal of the American Statistical Association 74:519–29.

Waldorf, Brigitte S. 1993. ‘‘Segregation in Urban Space: A New Measurement

Approach.’’ Urban Studies 30:1151–64.

White, Michael J. 1983. ‘‘The Measurement of Spatial Segregation.’’ American

Journal of Sociology 88:1008–18.

———. 1986. ‘‘Segregation and Diversity Measures in Population Distribution.’’

Population Index 52:198–221.

Wong, David S. 1993. ‘‘Spatial Indices of Segregation.’’ Urban Studies 30:559–72.

Wong, David W. S. 1997. ‘‘Spatial Dependency of Segregation Indices.’’ Canadian

Geographer 41:128–36.

———. 1998. ‘‘Measuring Multiethnic Spatial Segregation.’’ Urban Geography

19:77–87.

———. 1999. ‘‘Geostatistics as Measures of Spatial Segregation.’’ Urban Geogra-

phy 20:635–47.

———. 2002. ‘‘Spatial Measures of Segregation and GIS.’’ Urban Geography

23:85–92.

———. 2003. ‘‘Implementing Measures of Spatial Segregation in GIS.’’ Compu-

ters, Environment and Urban Systems 27:53–70.

Wong, David W. S., and Wing K. Chong. 1998. ‘‘Using Spatial Segregation

Measures in GIS and Statistical Modeling Packages.’’ Urban Geography

19:477–85.

Zoloth, Barbara S. 1976. ‘‘Alternative Measures of School Segregation.’’ Land

Economics 52:278–98.

162 REARDON AND O’SULLIVAN

Case: 3:15-cv-00421-jdp   Document #: 72-7   Filed: 01/26/16   Page 42 of 42



Hypersegregation in U.S. Metropolitan Areas: Black and Hispanic Segregation along Five
Dimensions
Author(s): Douglas S. Massey and Nancy A. Denton
Source: Demography, Vol. 26, No. 3 (Aug., 1989), pp. 373-391
Published by: Springer on behalf of the Population Association of America
Stable URL: http://www.jstor.org/stable/2061599 .
Accessed: 30/05/2011 21:06

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=springer. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Springer and Population Association of America are collaborating with JSTOR to digitize, preserve and extend
access to Demography.

http://www.jstor.org

Case: 3:15-cv-00421-jdp   Document #: 72-8   Filed: 01/26/16   Page 1 of 20

http://www.jstor.org/action/showPublisher?publisherCode=springer
http://www.jstor.org/action/showPublisher?publisherCode=paa
http://www.jstor.org/stable/2061599?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=springer


Demography, Vol. 26, No. 3, August 1989 

Hypersegregation in U.S. Metropolitan Areas: Black 
and Hispanic Segregation Along Five Dimensions 

Douglas S. Massey and Nancy A. Denton 
Population Research Center, 1155 E. 60th Street, 
NORC/University of Chicago, Chicago, 
Illinois 60637 

Residential segregation has traditionally been measured by using the index of dissim- 
ilarity and, more recently, the P* exposure index. These indices, however, measure 
only two of five potential dimensions of segregation and, by themselves, understate 
the degree of black segregation in U.S. society. Compared with Hispanics, not only 
are blacks more segregated on any single dimension of residential segregation, they 
are also likely to be segregated on all five dimensions simultaneously, which never 
occurs for Hispanics. Moreover, in a significant subset of large urban areas, blacks 
experience extreme segregation on all dimensions, a pattern we call hypersegregation. 
This finding is upheld and reinforced by a multivariate analysis. We conclude that 
blacks occupy a unique and distinctly disadvantaged position in the U.S. urban 
environment. 

Since Duncan and Duncan's (1955) seminal paper, ecologists have relied primarily on 
the index of dissimilarity to measure residential segregation. Over the years, however, and 
especially since the critique of Cortese, Falk, and Cohen (1976), many other measures of 
segregation have been proposed (see James and Taeuber, 1985, and White, 1986, for reviews). 
In a recent paper, we identified 20 such measures and undertook a detailed conceptual and 
statistical analysis of their properties and interrelationships (Massey and Denton, 1988a). 
On both theoretical and empirical grounds, we concluded that segregation is a global 
construct that subsumes five distinct dimensions of spatial variation. 

These five dimensions are evenness, exposure, clustering, centralization, and concen- 
tration. Evenness is the degree to which the percentage of minority members within resi- 
dential areas equals the citywide minority percentage; as areas depart from the ideal of 
evenness, segregation increases. Exposure is the degree of potential contact between minority 
and majority members; it reflects the extent to which groups are exposed to one another by 
virtue of sharing neighborhoods in common. Clustering is the extent to which minority 
areas adjoin one another in space; it is maximized when minority neighborhoods form one 
large, contiguous ghetto and minimized when they are scattered widely in space. Central- 
ization is the degree to which minority members are settled in and around the center of an 
urban area, usually defined as the central business district. Finally, concentration is the 
relative amount of physical space occupied by a minority group; as segregation rises, minority 
members are increasingly concentrated within a small, geographically compact area. 

A high level of segregation on any one of these dimensions is problematic because it 
isolates a minority group from amenities, opportunities, and resources that affect social and 
economic well-being (cf. Logan, 1978; Massey, Condran, and Denton, 1987; Schneider 
and Logan, 1982, 1985). As high levels of segregation accumulate across dimensions, the 
deleterious effects of segregation multiply because isolation intensifies. Indices of evenness 
and exposure, by themselves, cannot capture this multidimensional layering of segregation 
and, therefore, misrepresent the nature of black segregation and understate its severity. Not 
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only are blacks more segregated than other groups on any single dimension of segregation, 
they are also more segregated across all dimensions simultaneously. In an important subset 
of urban areas, blacks are extremely segregated on each dimension, a pattern we call hy- 
persegregation. The purpose of this article is to show that blacks occupy a unique and 
distincily disadvantaged position in U.S. urban society by comparing their pattern of seg- 
regation with that of another disadvantaged minority group, Hispanics, and to demonstrate 
that the pattern of hypersegregation holds after the application of statistical controls for major 
confounding variables. 

Data and Measures 

Data are taken from the 1980 Summary Tape Files (STF4) of the U.S. Bureau of the 
Census (1980) and cover the 50 largest standard metropolitan statistical areas (SMSAs) plus 
10 others that contain large numbers of Hispanics. The units of analysis are census tracts. 
Hispanics are defined by using the Spanish-origin item, and whites and blacks are identified 
from the census question on race, both 100 percent items (U.S. Bureau of the Census, 
1982). The cross-classification of race and Spanish origin permits the definition of the 
mutually exclusive ethnic/racial categories (black Hispanics, white Hispanics, non-Hispanic 
blacks, and non-Hispanic whites) that are employed in this analysis. These groups were 
created by subtracting white and black Hispanics from the respective total counts of whites 
and blacks. For convenience, we refer to non-Hispanic whites as Anglos, though we are 
well aware that the terms "Anglo" and "Hispanic" mask considerable diversity in national 
origins and characteristics (Bean and Tienda, 1987; Greeley, 1974). A more detailed de- 
scription of the data set is found in Massey and Denton (1987). 

In our earlier methodological article (Massey and Denton, 1988a), we described in 
detail the choice of an index for each of the five dimensions of segregation, so only a brief 
review of their computational formulas is provided here. Evenness is measured with the 
traditional index of dissimilarity, which varies between 0 and 1.0, and represents the pro- 
portion of minority members that would have to change tracts to achieve an even distribution 
(Jakubs, 1977, 1979, 1981). The dissimilarity index may be defined as 

D 2TP(1 P)' (1) 

where ti and pi are the total population and minority proportion of areal unit i and T and 
P are the population size and minority proportion of the whole city, which is subdivided 
into n areal units. 

Exposure is measured with the P* measure, which has two basic forms. The first is 
the interaction index (NP *), which measures the probability that members of minority group 
X share a tract with members of majority group Y. The other is the isolation index (XPxfl 
which measures the probability that group X members share a tract with each other. Both 
measures vary between 0 and 1.0 and in the two-group case sum to unity. Since higher 
values on the isolation index signify greater segregation, we chose it as our indicator of 
exposure. It is computed as the minority-weighted average of each unit's minority proportion 
(Lieberson, 1980, 1981): 

n 

xP* = E [ (2) 
i=1 LJL-tiJ 

where xi and ti are the numbers of X members and the total population of tract i and X 
represents the number of X members citywide. 
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Clustering is the extent to which tracts inhabited by minority members adjoin one 
another, or cluster, in space. A high degree of clustering implies a residential structure in 
which minority areas are contiguous and closely packed, creating one large ethnic or racial 
enclave, whereas a low level of clustering means that minority areal units are widely scattered 
around the urban environment. The index of clustering we selected is White's (1983) index 
of spatial proximity, SP. It takes the average proximity between members of the same group 
and the average proximity between members of different groups and then computes a weighted 
average of these quantities. The average proximity between group X members is 

n n 
p EE xzxicii (3) 

i=l j=l 

and the average proximity between members of X and Y is 

=E E x (4) 
i=1 j=1 XY 

where Y is the number of Y members citywide, xi and y, are the numbers of X and Y 
members in units i and j, and ci, is a distance function between these two areas, defined 
here as a negative exponential: c" = exp(-d j). The term d'i indicates the linear distance 
between the centroids of units i and j, and di is estimated as 0.6ai x 5, where ai is the 
area of the tract. The negative exponential assumes that the likelihood of intragroup inter- 
action drops off rapidly with distance (White, 1983). 

Average proximities may also be calculated among Y members (Pyy) and among all 
members of the population (P,,) by analogy with equation (3). White's index is the average 
of intragroup proximities, PJxxP,, and PYYIP,,, weighted by the fraction of each group in the 
population: 

sPP xPx +YPypy SP=- X 
TPtt 

(5) 

producing a ratio that equals 1.0 when there is no differential clustering between X and Y 
and a ratio that is greater than 1.0 when members of X live nearer to each other than to 
members of Y. The ratio would be less than 1.0 in the unusual circumstance that members 
of X resided closer to members of Y than to other X members. In our data, all SP indices 
varied between 1 and 2, so we subtracted 1.0 from each index to produce a measure that 
varied between 0 and 1. 

The fourth dimension of segregation is centralization, which is the degree to which a 
group is located near the center of an urban area. During the 1960s and 1970s, blacks were 
increasingly isolated in central cities, away from suburban areas where whites congregated 
increasingly (Farley et al., 1978; Massey and Denton, 1988b). Centralization is measured 
by an index that reflects the extent to which a group is spatially distributed close to, or far 
away from, the central business district (CBD). It compares a group's distribution by distance 
from the CBD to the distribution of land area around the CBD by using a formula adapted 
from Duncan (1957), Duncan, Cuzzort, and Duncan (1961), and Glaster (1984): 

CE = Xi-A) - XAi)I (6) 

where the n areal units are ordered by increasing distance from the central business district 
and Xi and Ai are the respective cumulative proportions of X's population and land area 
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in tract i. This index varies between + 1 and - 1, with positive values indicating a tendency 
for group X members to reside close to the city center and negative values indicating a 
tendency to live in outlying areas. A score of 0 means that the group has a uniform distribution 
throughout the metropolitan area. The index therefore gives the proportion of X members 
required to change residence to achieve a uniform distribution of population around the 
central business district. 

The last dimension of segregation that we consider is concentration, which is the relative 
amount of physical space occupied by a minority group in the urban environment. Con- 
centration is a relevant dimension of segregation because discrimination often restricts mi- 
norities to a small number of neighborhoods that together comprise a small share of the 
urban environment (Hirsch, 1983; Kain and Quigley, 1975; Spear, 1967). It is measured 
by computing the average amount of physical space occupied by group X relative to group 
Y and comparing this quantity with the ratio that would be achieved if group X were 
maximally concentrated and group Y were maximally dispersed. This relative concentration 
index is computed as follows: 

[ xiai y} a]iI 
[EX /EY] 

CO= 
nita,nt-.(7) 

[ 
= 

/ 
= - I 

j=1 T1 i=n2 T2 

where areal units are ordered by geographic size from smallest to largest, ai is the land area 
of unit i, and the two numbers nI and n2 refer to different points in the rank ordering of 
areal units from smallest to largest: nI is the rank of the tract where the cumulative total 
population of areal units equals the total minority population of the city, summing from 
the smallest unit up; n2 is the rank of the tract where the cumulative total population of 
units equals the minority population totalling from the largest unit down. T, equals the 
total population of tracts from 1 to nl, and T2 equals the total population of tracts from n2 
to n. As before, ti refers to the total population of area i and X is the number of group X 
members in the city. 

The numerator of this index divides the average land area of units inhabited by group 
X members by the average area of units inhabited by Y members, and the denominator 
takes the average that would be obtained if X members lived in the smallest space possible 
and divides it by the average that would be obtained if Y members fit into the largest possible 
area. The quotient is then standardized to vary between - 1.0 and + 1.0. A score of 0 
means that the two groups are equally concentrated in urban space. A score of - 1.0 means 
that Y's concentration exceeds X's to the maximum extent possible, and a score of 1.0 means 
the converse. 

Spatial Segregation of Blacks 
These five indices were computed for blacks in 60 metropolitan areas and are reported 

in Table 1. Since measures of evenness and isolation were analyzed in detail elsewhere 
(Massey and Denton, 1987, 1988b), we focus on the remaining three dimensions of seg- 
regation. Intercorrelations between the measures are shown at the bottom of the table. They 
range from 0.105 to 0.877 and average 0.525. Although the five dimensions overlap em- 
pirically, no index perfectly replicates another. Two indices share at most 77 percent common 
variance and at the least only 1 percent. In general, the evenness, exposure, and clustering 
indices are more highly intercorrelated than the centralization and concentration measures. 
The interrelationships among the indices were discussed in detail in our earlier article (Massey 
and Denton, 1988a). 
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Five key metropolitan areas with large minority populations are highlighted at the top 
of the table, and regional and national averages are reported at the bottom. Measures of 
black clustering are shown in the SP columns of Table 1. In general SP indices above 0.600 
are very high and imply the existence of a large enclave of contiguous tracts containing 
most blacks. Indices between 0.400 and 0.600 are still high but indicate the presence of 
scattered black neighborhoods away from the principal ghetto. SP values between 0. 100 and 
0.400 are moderate and correspond to a pattern of scattered black and racially mixed neigh- 
borhoods. Finally, indices under 0. 100 are very low, indicating a spatial configuration 
dominated by racially mixed neighborhoods that are widely scattered about the city (see 
Massey and Denton, 1988a; White, 1983, 1986). 

In most cities, the clustering of blacks is moderate or low. The average SP index for 
all 60 SMSAs is only 0.292, and 14 metropolitan areas have indices in the lower range 
(under 0.100). Another 29 display indices that are in the moderate range (under 0.400). 
Clustering is notably lower in Western SMSAs, with a regional average of only 0. 141, as 
well as in the South, where the average is 0.259. In short, blacks in the vast majority of 
metropolitan areas do not live in a spatially distinct ghetto of contiguous minority tracts. 

Despite the scant evidence of clustering in most metropolitan areas, spatial agglom- 
eration is pronounced in SMSAs with large black populations. The lowest clustering indices 
are generally observed in metropolitan areas with very few black residents, such as Albany, 
Albuquerque, Bakersfield, Minneapolis, Sacramento, and Tucson. Although SMSAs with 
clustering indices in the high or very high range are few in number, they generally include 
areas with the largest urban black populations in the United States. Nine SMSAs have SP 
indices of 0.600 or more, including Chicago, Los Angeles, Baltimore, Cleveland, Detroit, 
Newark, Philadelphia, and Milwaukee. Metropolitan areas with indices in the 0.400 to 
0.600 range include New York, Atlanta, Gary, Kansas City, Memphis, Washington, Buffalo, 
Boston, and Indianapolis. 

As is obvious from this list, the clustering of black neighborhoods is especially prevalent 
in older industrial areas of the Northeast and Midwest. The regional average was 0.474 
among SMSAs in North Central states and 0.368 among those in the Northeast. In these 
areas, blacks segregated on one dimension also tend to be segregated on others. Among the 
nine SMSAs with clustering indices above 0.600, seven had dissimilarity indices of 0.800 
or more and all were greater than 0.750. All of these SMSAs had P* isolation indices in 
excess of 0.600, and six of the nine areas displayed indices greater than 0.700. 

The CE column of Table 1 contains indices of black centralization, which measure 
the extent to which blacks are distributed closely round the central business district. We 
found in earlier work that blacks have little access to the suburbs of U. S. cities (Massey and 
Denton 1987, 1988b), so it is not surprising to find that most SMSAs display very high 
levels of black centralization. In general, a CE index above 0.800 is very high, indicating 
that 80 percent of the black population would have to move to be uniformly distributed in 
the urban environment. More than two-thirds of the metropolitan areas (43 of 60) display 
centralization indices of 0.800 or more; and this list contains all SMSAs with high or very 
high clustering indices. Only eight metropolitan areas have centralization indices below 
0.600: Miami, Anaheim, Ft. Lauderdale, Greensboro, Jersey City, Salt Lake City, Tampa, 
and San Antonio. 

The CO column in Table 1 displays black concentration indices, which indicate the 
extent to which blacks occupy a small amount of urban space relative to Anglos. In this 
context, an index value of 0.700 or greater indicates a high level of concentration, with 
black residents being packed into a limited number of geographically small census tracts. 
Blacks in 28 of the SMSAs-nearly half-experience a high level of spatial concentration. 
This list includes 14 of the 17 SMSAs we have already identified as being highly or very 
highly segregated on the dimensions of clustering and centralization, including Chicago, 
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Table 1. Five Indices of Black Residential Segregation in 60 U.S. SMSAs in 1980 

Segregation index 

Metropolitan area D bPb SP CE CO 

Key SMSAs 
Chicago 0.878 0.828 0.793 0.872 0.887 
Los Angeles-Long Beach 0.811 0.604 0.765 0.859 0.695 
Miami 0.778 0.642 0.344 0.463 0.565 
New York 0.819 0.627 0.468 0.795 0.892 
San Francisco-Oakland 0.717 0.511 0.282 0.836 0.687 

Other SMSAs 
Albany-Schenectady-Troy 0.622 0.276 0.088 0.848 0.748 
Albuquerque 0.390 0.050 0.008 0.795 0.371 
Anaheim-Santa Ana-Garden Grove 0.458 0.038 0.018 0.576 -0.442 
Atlanta 0.762 0.714 0.398 0.827 0.686 
Austin 0.608 0.349 0 123 0.778 0.567 

Bakersfield 0.644 0.346 0.101 0.827 0.652 
Baltimore 0.747 0.723 0.622 0.857 0.763 
Birmingham 0.419 0.496 0.059 0.830 0.775 
Boston 0.774 0.550 0.491 0.871 0.799 
Buffalo 0.794 0.635 0.443 0.884 0.882 

Cincinnati 0.723 0.543 0.158 0.883 0.669 
Cleveland 0.875 0.804 0.743 0.898 0.927 
Columbus 0.724 0.571 0.321 0.933 0.854 
Corpus Christi 0.717 0.267 0.130 0.910 0.793 
Dallas-Fort Worth 0.771 0.645 0.334 0.749 0.693 

Dayton 0.780 0.650 0.336 0.861 0.600 
Denver-Boulder 0.685 0.410 0.211 0.719 0.385 
Detroit 0.867 0.773 0.846 0.924 0.842 
El Paso 0.347 0.050 0.013 0.687 0.382 
Fort Lauderdale 0.816 0.702 0.237 0.593 0.784 

Fresno 0.624 0.377 0.159 0.968 0.598 
Gary-Hammond-East Chicago 0.906 0.773 0.561 0.887 0.869 
Greensboro-Winston-Salem 0.564 0.496 0.053 0.601 0.613 
Houston 0.695 0.593 0.238 0.840 0.569 
Indianapolis 0.762 0.623 0.411 0.942 0.804 

Jersey City 0.765 0.604 0.335 0.560 0.555 
Kansas City 0.789 0.689 0.461 0.921 0.857 
Louisville 0.718 0.628 0.249 0.894 0.699 
Memphis 0.695 0.737 0.440 0.817 0.550 
Milwaukee 0.839 0.695 0.689 0.951 0.944 

Minneapolis-St. Paul 0.693 0.306 0.102 0.944 0.890 
Nashville-Davidson 0.647 0.551 0.244 0.744 0.628 
Nassau-Suffolk 0.755 0.469 0.179 0.643 0.194 
New Orleans 0.683 0.688 0.327 0.906 0.584 
Newark 0.816 0.692 0.755 0.859 0.919 

(Table continues) 
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Table 1. Continued 

Segregation index 

Metropolitan area D bPb* SP CE CO 

Norfolk-Virginia Beach 0.628 0.625 0.199 0.712 0.559 
Oklahoma City 0.710 0.560 0.250 0.886 0.546 
Paterson-Clifton-Passaic 0.815 0.489 0.277 0.876 0.929 
Philadelphia 0.788 0.696 0.673 0.855 0.757 
Phoenix 0.594 0.225 0.041 0.945 0.548 

Pittsburgh 0.727 0.541 0.272 0.812 0.821 
Portland 0.685 0.316 0.168 0.956 0.826 
Providence-Warwick-Pawtucket 0.731 0.253 0.120 0.818 0.803 
Riverside-San Bernadino 0.488 0.160 0.048 0.896 0.212 
Rochester 0.679 0.437 0.321 0.874 0.792 

Sacramento 0.559 0.209 0.096 0.900 0.509 
St. Louis 0.814 0.729 0.264 0.931 0.893 
Salt Lake City-Ogden 0.533 0.041 0.006 0.443 0.384 
San Antonio 0.641 0.358 0.229 0.523 0.544 
San Diego 0.643 0.263 0.171 0.902 0.537 

San Jose 0.487 0.066 0.032 0.795 0.177 
Seattle-Everett 0.682 0.294 0.137 0.952 0.791 
Tampa-St. Petersburg 0.735 0.507 0.246 0.581 0.493 
Tucson 0.466 0.088 0.014 0.910 0.253 
Washington, D.C. 0.693 0.672 0.450 0.850 0.441 

Averages 
Total 0.693 0.488 0.292 0.816 0.642 
Northeast 0.757 0.522 0.368 0.808 0.757 
North Central 0.804 0.665 0.474 0.912 0.836 
South 0.669 0.550 0.259 0.752 0.612 
West 0.592 0.250 0.141 0.830 0.449 

Intercorrelations 
D 1.000 0.795 0.856 0.169 0.702 
P* 0.795 1.000 0.877 0.105 0.528 
SP 0.856 0.877 1.000 0.175 0.575 
CE 0.169 0.105 0.175 1.000 0.466 
CO 0.702 0.528 0.575 0.466 1.000 

New York, Los Angeles, Detroit, Cleveland, Gary, Newark, Philadelphia, and Baltimore- 
in other words, the largest black settlements in the Northern states. 

We have thus identified a significant core of large metropolitan areas in which blacks 
are highly segregated on multiple dimensions. This conclusion is supported visually by the 
three panels of Figure 1, which plot indices for each of the three spatial dimensions against 
the index of dissimilarity. SMSAs on the plot are indicated by two-letter codes, which are 
paired with the metropolitan areas in Table 2. Eight SMSAs with very high SP values are 
circumscribed by an oval, and those in the moderately high range are enclosed by a rectangle. 
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The figure demonstrates that SMSAs with high SP indices generally also have high levels 
of dissimilarity. Three SMSAs, however, have high dissimilarity measures but only moderate 
clustering indices-Paterson, St. Louis, and Ft. Lauderdale-and these are enclosed by a 
triangle. 

SMSAs that were enclosed as groups by an oval, a rectangle, or a triangle in the top 
panel of the figure are enclosed individually by those symbols in the middle and lower 
panels, so the relative positions of the three sets of SMSAs can be compared and contrasted 
across panels. The middle panel plots indices of centralization and shows that the same 
SMSAs that were highly clustered are also highly centralized. They are packed tightly in 
the upper right sector of the plot, just above the diagonal. The bottom panel shows that the 
same SMSAs have high levels of geographic concentration, again being packed tightly just 
above the diagonal in the upper right sector of the scatterplot. Although the plots are not 
shown, the same SMSAs have high isolation P*s and display a similar pattern when plotted 
against D. 

We can thus identify an important subset of major urban areas in which blacks are 
very highly segregated on all five dimensions of residential segregation. If we let "high 
segregation" mean a dissimilarity index of 0.600 or more, an isolation P * of 0.700 or more, 

Table 2. Names and Abbreviations of SMSAs Used in Study of 
Spatial Segregation 

Metropolitan Metropolitan 
area Abbreviation area Abbreviation 

Albany AL Memphis Me 
Albuquerque AB Miami Ml 
Anaheim AN Milwaukee ML 
Atlanta AT Minneapolis MN 
Austin AU Nashville NS 
Bakersfield BK Nassau-Suffolk NA 
Baltimore BA New Orleans NO 
Birmingham BI New York NY 
Boston BO Newark NK 
Buffalo BU Norfolk NF 
Chicago CH Oklahoma City OK 
Cincinnati Cl Paterson PA 
Cleveland CL Philadelphia PH 
Columbus CO Phoenix PX 
Corpus Christi CO Pittsburgh PT 
Dallas DA Portland PO 
Dayton DY Providence PR 
Denver DN Riverside RI 
Detroit DT Rochester RO 
El Paso EP Sacramento SC 
Fort Lauderdale FL St. Louis SL 
Fresno FR Salt Lake City SK 
Gary GA San Antonio SA 
Greensboro GR San Diego SD 
Houston Ho San Francisco SF 
Indianapolis IN San Jose SJ 
Jersey City JC Seattle SE 
Kansas City KC Tampa TP 
Los Angeles LA Tucson TU 
Louisville LV Washington, D.C. DC 
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an SP index of 0.600 or greater, a centralization score of 0. 800 or higher, and a concentration 
index in excess of 0. 700, then blacks in six SMSAs are highly segregated on all five dimensions 
(Baltimore, Chicago, Cleveland, Detroit, Milwaukee, and Philadelphia), and in another 
four SMSAs they are segregated on four dimensions (Gary, Los Angeles, Newark, and St. 
Louis). Together these 10 SMSAs contain 29 percent of metropolitan blacks and 23 percent 
of all blacks in the United States. 

In short, roughly one-quarter of the American black population lives in an urban 
environment that is hypersegregated. Blacks in these cities are very unevenly distributed 
among tracts and live in small, densely settled, monoracial neighborhoods that are part of 
large agglomerations of contiguous tracts clustered tightly around the city center. Residents 
of such an environment would be very unlikely to come into regular contact with a member 
of Anglo society, except through participation in the labor force, an option that is denied 
to the quarter of central-city blacks who are under- or unemployed (Lichter, 1988). Blacks 
without jobs would rarely meet, and would be extremely unlikely to know, an Anglo resident 
of the same metropolis. 

On the other hand, if we establish very liberal criteria for defining a "low" level of 
black segregation (e.g., D < 0.600, P* < 0.500, SP < 0.600, CE < 0.800, and CO < 
0.700), then blacks in nine SMSAs experience low segregation on at least four of the five 
dimensions: Albuquerque, Anaheim, El Paso, Greensboro, Salt Lake City, San Jose, Phoe- 
nix, Riverside, and Tucson. But together these SMSAs contain only 2 percent of metropolitan 
blacks and only 1.5 percent of all blacks in the United States, so very few blacks experience 
a residential pattern that might be called "integrated." 

Spatial Segregation of Hispanics 

The distinctiveness of the residential situation faced by blacks is emphasized by the 
data in Table 3, which presents indices of dissimilarity, isolation, clustering, centralization, 
and concentration for Hispanics in the 60 metropolitan areas. No Hispanic clustering index 
was high (SP > 0.600) or even moderately high (SP > 0.400) by black standards. The 
Hispanic SP indices generally fell into the moderate range, with 4 SMSAs lying between 
0.300 and 0.400 (San Antonio, Los Angeles, Chicago, and Fresno) and 10 located between 
0.150 and 0.300 (New York, Newark, Miami, El Paso, Corpus Christi, Bakersfield, Phil- 
adelphia, Paterson, San Diego, and Albuquerque). At the same time, relatively few SMSAs 
displayed high Hispanic centralization or concentration indices. Whereas black centrali- 
zation exceeded 0.800 in 43 cases, only 19 Hispanic indices did so; and only 9 SMSAs 
evinced Hispanic concentration indices of 0.700 or more, compared with 28 for blacks. 

In general, low to moderate levels of segregation were observed for Hispanics on all 
dimensions. The average level of dissimilarity was 0.436 (compared with 0.693 for blacks), 
with average indices of isolation, clustering, centralization, and concentration of 0.201, 
0.090, 0.713, and 0.398, respectively (compared with indices of 0.488, 0.292, 0.816, and 
0.642 for blacks). Even in SMSAs with very large Spanish population, such as Los Angeles, 
San Antonio, Miami, New York, and Chicago, there was little evidence of high segregation 
on multiple dimensions. For example, the largest concentration of Hispanics in the United 
States is in Los Angeles, where people of Spanish origin number more than 2 million and 
represent 28 percent of the metropolitan population. The respective indices of segregation 
for Hispanic Angelinos were, in the same order as before, 0.570, 0.501, 0.333, 0.772, and 
0.619. None of these values would be considered high by black standards. 

In general, then, high levels of Hispanic segregation do not appear to correlate strongly 
across dimensions, and in no SMSA do Hispanics experience the multidimensional hyper- 
segregation of blacks. The relative independence of the indices is also evident in Figure 2, 
which plots Hispanic clustering, centralization, and concentration indices against the index 
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of dissimilarity. In the top panel, the two highest sets of clustering indices are enclosed by 
an oval and a rectangle; and in subsequent panels, SMSAs from these groups are identified 
individually by these symbols. In the middle panel, centralization indices are obviously 
much more dispersed than was true for blacks. The ovals and rectangles are scattered widely 
rather than concentrated in the upper right sector of the graph. Concentration indices in 
the bottom panel are even more scattered, with no detectable grouping of ovals or rectangles. 

If we adopt the same criteria used to define high segregation for blacks (D > 0.600, 
P > 0.700, SP > 0.600, CE > 0.800, and CO > 0.700) and consider the multidimensional 
structure of Hispanic segregation, the contrast between the two groups stands out clearly. 
In no metropolitan area are Hispanics highly segregated on five or even four dimensions, 
and in only four areas are they segregated on as many as three dimensions-Chicago, New 
York, Newark, and Paterson. Three of these areas are dominated by Puerto Rican popu- 
lations, which display high levels of segregation compared with other Hispanic groups, a 
pattern that has been attributed to the Afro-American ancestry of this group (Massey and 
Bitterman, 1985). Moreover, several of the largest Hispanic concentrations in the United 
States are not highly segregated on any dimension at all, including Los Angeles, San Antonio, 
Miami, and San Diego. Indeed, a lack of high segregation on any dimension is the most 
common pattern for Hispanics; among the 60 SMSAs in the data set, 37 were not highly 
segregated on any of the five dimensions. Thus not only are Hispanics less segregated than 
blacks on any single dimension, they are very unlikely to accumulate high levels of segre- 
gation across multiple dimensions simultaneously. 

The Hispanic-Black Differential in Multivariate Perspective 

It thus appears that blacks occupy a unique position in the American urban landscape. 
They are more segregated than Hispanics on every dimension of segregation, and in an 
important core of metropolitan areas-primarily older industrial areas of the Northeast and 
Midwest-they are extremely segregated on all five dimensions simultaneously, an unusual 
condition we have called hypersegregation. This condition is not replicated anywhere by 
Hispanics or by any other group we have examined (see Langberg and Farley, 1985, and 
Massey and Denton, 1987, 1988b, for data on Asian segregation). 

We hesitate, however, to make a strong statement about the relative segregation of 
blacks and Hispanics in U. S. metropolitan areas, since the two groups differ on many variables 
that directly influence patterns of residential location. Differences in regional concentration, 
relative population size, nativity composition, socioeconomic status, and local economic 
conditions could account for all or part of the black-Hispanic differential in the SMSAs 
under study, and it would be wrong to infer that black segregation is exceptional from a 
descriptive study of the indices alone. 

To test how robust the apparent contrast between blacks and Hispanics is, we estimated 
multivariate models of segregation that directly compare the two groups, controlling for 
possible confounding variables. Table 4 presents regression equations measuring the impact 
of selected explanatory factors on each of the five dimensions of segregation. We pool black 
and Hispanic indices for each dimension and then regress them on a set of factors that are 
theoretically expected to influence the level of minority segregation. For each of the five 
regressions, a dummy variable under the heading "Minority group" indicates whether the 
segregation index pertains to blacks (Blacks = 1) or Hispanics (Blacks = 0). If the black- 
Hispanic differential is explained by variables in the model, then the coefficient for this 
dummy variable should be statistically insignificant. 

Four of the five indices of segregation were transformed into logits before undertaking 
the regression analyses, since their limited range (0-1) would bias ordinary least squares 
(OLS) estimates. For any limited-range variable P, the logit transformation-logit(P) = 
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Table 3. Five Indices of Hispanic Residential Segregation for 60 SMSAs in 1980 

Segregation index 

Metropolitan area D hPh SP CE CO 

Key SMSAs 
Chicago 0.635 0.380 0.317 0.813 0.746 
Los Angeles-Long Beach 0.570 0.501 0.333 0.772 0.619 
Miami 0.519 0.583 0.240 0.542 0.360 
New York 0.657 0.399 0.263 0.841 0.878 
San Francisco-Oakland 0.402 0.193 0.083 0.628 0.340 

Other SMSAs 
Albany-Schenectady-Troy 0.367 0.036 0.006 0.499 0.358 
Albuquerque 0.429 0.505 0.149 0.768 0.470 
Anaheim-Santa Ana-Garden Grove 0.416 0.310 0.115 0.635 0.449 
Atlanta 0.337 0.021 0.003 0.696 0.349 
Austin 0.449 0.336 0.100 0.639 0.454 

Bakersfield 0.545 0.421 0.197 0.761 0.401 
Baltimore 0.381 0.015 0.007 0.657 0.306 
Birmingham 0.226 0.009 0.001 0.625 0.461 
Boston 0.579 0.129 0.083 0.788 0.705 
Buffalo 0.491 0.077 0.028 0.808 0.590 

Cincinnati 0.303 0.010 0.001 0.704 0.236 
Cleveland 0.554 0.082 0.047 0.842 0.704 
Columbus 0.350 0.013 0.003 0.789 0.414 
Corpus Christi 0.516 0.636 0.225 0.644 0.712 
Dallas-Fort Worth 0.478 0.240 0.085 0.732 0.511 

Dayton 0.328 0.010 0.002 0.702 0.282 
Denver-Boulder 0.475 0.274 0.104 0.778 0.494 
Detroit 0.451 0.065 0.062 0.746 0.374 
El Paso 0.512 0.741 0.223 0.737 0.145 
Fort Lauderdale 0.255 0.053 0.008 0.307 -0.065 

Fresno 0.454 0.446 0.286 0.800 -0.221 
Gary-Hammond-East Chicago 0.562 0.237 0.105 0.835 0.694 
Greensboro-Winston-Salem 0.321 0.010 0.001 0.495 0.318 
Houston 0.464 0.328 0.119 0.818 0.532 
Indianapolis 0.332 0.012 0.004 0.777 0.392 

Jersey City 0.488 0.465 0.108 0.129 0.606 
Kansas City 0.422 0.104 0.031 0.854 0.508 
Louisville 0.281 0.009 0.001 0.645 0.219 
Memphis 0.406 0.013 0.004 0.707 0.206 
Milwaukee 0.562 0.162 0.078 0.848 0.718 

Minneapolis-St. Paul 0.418 0.046 0.013 0.860 0.498 
Nashville-Davidson 0.371 0.012 0.003 0.559 0.158 
Nassau-Suffolk 0.362 0.096 0.027 0.606 0.222 
New Orleans 0.251 0.063 0.029 0.809 0.250 
Newark 0.656 0.263 0.255 0.807 0.796 

(Table continues) 
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Table 3. Continued 

Segregation index 

Metropolitan area D hPh SP CE CO 

Norfolk-Virginia Beach 0.284 0.020 0.003 0.721 -0.026 
Oklahoma City 0.316 0.054 0.011 0.804 0.338 
Paterson-Clifton-Passaic 0.722 0.375 0.190 0.802 0.900 
Philadelphia 0.629 0.216 0.193 0.780 0.549 
Phoenix 0.494 0.321 0.077 0.925 0.348 

Pittsburgh 0.419 0.013 0.003 0.642 0.211 
Portland 0.250 0.028 0.005 0.782 -0.081 
Providence-Warwick-Pawtuckett 0.567 0.085 0.038 0.718 0.716 
Riverside-San Bernadino 0.364 0.316 0.101 0.829 0.338 
Rochester 0.580 0.116 0.081 0.808 0.688 

Sacramento 0.364 0.165 0.054 0.756 -0.030 
St. Louis 0.340 0.019 0.003 0.754 0.468 
Salt Lake City-Ogden 0.308 0.090 0.013 0.216 0.206 
San Antonio 0.569 0.665 0.384 0.532 0.660 
San Diego 0.421 0.269 0.185 0.793 0.140 

San Jose 0.445 0.317 0.118 0.729 0.109 
Seattle-Everett 0.213 0.026 0.003 0.846 0.222 
Tampa-St. Petersburg 0.489 0.175 0.071 0.701 0.211 
Tucson 0.519 0.431 0.122 0.866 0.219 
Washington, D.C. 0.307 0.054 0.017 0.758 0.517 

Averages 
Total 0.436 0.201 0.090 0.713 0.398 
Northeast 0.543 0.189 0.106 0.686 0.602 
North Central 0.438 0.095 0.055 0.794 0.503 
South 0.387 0.202 0.077 0.656 0.331 
West 0.417 0.288 0.122 0.743 0.251 

Intercorrelations 
D 1.000 0.699 0.786 0.324 0.656 
P* 0.699 1.000 0.951 0.185 0.321 
SP 0.786 0.951 1.000 0.243 0.400 
CD 0.324 0.185 0.243 1.000 0.306 
CO 0.656 0.321 0.400 0.306 1.000 

1n[P/(I - P)]-creates a new variable ranging from negative to positive infinity, thus enabling 
the use of OLS estimation procedures. The concentration index was not transformed because 
it included a few negative values, reflecting its theoretical range from - 1 to + 1. 

The explanatory variables fall into one of five categories: indicators of acculturation, 
socioeconomic status, population composition, regional location, metropolitan context, and 
sample selectivity. Specific variables were selected by following a line of empirical research 
and theoretical reasoning developed in our earlier papers (Massey and Denton, 1987, 1988b). 
Initial tests revealed few problems with nonlinearity or multicolinearity among variables in 
the equations, and controls for compositional diversity among Hispanics proved to be in- 
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Figure 2. Indices of Clustering, Centralization, and Concentration Plotted Against 
the Index of Dissimilarity: Hispanics in 60 SMSAs, 1980 

Case: 3:15-cv-00421-jdp   Document #: 72-8   Filed: 01/26/16   Page 15 of 20



Hypersegregation in the U.S. 387 

114 0)0) 0 LOL LO) 0 00 CD0)CM 0 LO I'l C 
W r-I 00 0 )m0 c CO -CCO -I' -rLO(CD0 co CM 

0M 00 00 0 00 0 c 
c00 m0 0014 

N- 00 ~~~~~~~0 CMJ CI) CM 0 CM OO0LOC')'- CMJLON11- 
It I ~CM '-- 0 C') v-0 M I,C') 14LO - '--LO000n 

OCC')' M-r COO0 CmJco co 0 0 0 0'-'- 0C~~~~~~~~~~. . . . . . . .C' 

co 0 co( LO LO N-tNC' c~o 0) 0)C') 'l ~CM 
W 0 CC' C)0 LO) (c)( N--LC'co L0 

U) 0) 00 CON- C' 1-C')mCM LON-9 'N 

U) 0 2 ~~~co LOCO0 0)N 1 '- 0) CM co LO (DI'lLO CD CMJ CM 

0U) co 00-I- 
11 

CMJ( 1C1J -' -L- OL 
, 
(00000 ( 0N 1-C')-- 

( o0 0 C00 
c 

00 6 
O 

666 co 0 
c0j 6 

0 CD J6C\ 

cn ~~0 coN11- LO LO LO) CM JN- CM LO(coco 0) 0) 0) co CZ w ~ 00 00C-rJ 
co 

(0 CY) I'll CI'll J0 
I,-Illc 

OC' > 
0~-00 '~ 6M 666 I'lm co o CM0 I'll 

CZc ~C/) 
U) (0 c c COCO LOL) 0 'C) 0) LO 4,LO CO LO CMJN- 
V (0 44 ~CM CMJN- CO) LO 44 c CO )' 0 LO 0 LO CMJCO0 W~~~~ m 9~~~~~~ CM 9 LO co '4 N'- C r- M CCM CO co CO I,-N1- C\ 
CL co co c 

I-IC 
C 'l 

CD rl0_0 NCMJ I''lN-N- 0) CMJ '0) OC') 
C W COC)C) 0 0) CON".-'- ', '- C M)N--C'J- 0)N-l o N- 00 I'll C\J C2M CM 0) LO coC')0 CM Il 

Q.) 

0)N- MCMJ- CON I'l L o11 ~ -11 Mc DM0 0 ~~~co CMJO CD( (0 CMJCMJ0 LO CY)LO C\'0 CMJ0 CO1 

.0) 

U)co c coL _ a/) 
_ '' 

I'll 
N- 

C'(C\ ')---- N- LO ~0' N-CO 

0 00 00 6 666 '-~~~~~~~~~~~ ~~~C~O 0CM 6 66 0 
o 0 

LO co CM 0) LO '4 LO CO CD LO CM J-NCM 0)r- CO ) 
LO) 0) CM CMJ0) '- 0)Nr-( co co(oLO CMJ 0 I,0,0 C)C 2 m 9 99 '~~~~~~~~~~~~~~~~~~~4JC\ 4,LO 0 'C) \J0 0 I,-(CD0 C\O 

U)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~U 

CL 0~~~~~~~~~~ 
U) o~~~~~~~~~~~~~~~~~~~~~ 0) 

I- 0)~~~~~~~~~~~C 0 0~~~~~~~~~~~~~~~~ 

C Z CZE 0 C UE CD) 

< 0 D CO c cc Cl 

Case: 3:15-cv-00421-jdp   Document #: 72-8   Filed: 01/26/16   Page 16 of 20



388 Demography, Vol. 26, No. 3, August 1989 

significant and were eliminated. A full description of the explanatory variables, the theoretical 
model, and the selectivity correction is given in Massey and Denton (1987). 

The estimates of Table 4 generally confirm the exceptional nature of black segregation 
in U. S. metropolitan areas. The large discrepancy between black and Hispanic segregation 
indices observed in the earlier tables cannot be accounted for by the explanatory factors that 
we have identified. The coefficient for black minority status is large and highly significant 
in four of the five regression equations. Black race is particularly significant in the equations 
for dissimilarity and spatial isolation, where the coefficient exceeds its standard error by a 
factor of about six. All four of the equations fit the data well, accounting for between 61 
and 88 percent of the intermetropolitan variance in segregation. The only dimension on 
which black race was not significant was centralization, the equation that most poorly fits 
the data, explaining only 31 percent of the variance in the CE index. 

In other words, controlling for a variety of possible confounding factors, blacks are 
significantly more segregated than Hispanics on four of five dimensions of residential seg- 
regation. Apart from black minority status, segregation was strongly reduced by rising so- 
cioeconomic status; and on three dimensions (dissimilarity, isolation, and clustering), it was 
strongly increased by a high proportion of minority members. A relatively large number of 
black Hispanics reduced the level of Hispanic isolation and clustering, probably by promoting 
intergroup contact with blacks. Regional location in the Northeast and North Central states 
increased the level of dissimilarity, and a North Central location increased the level of 
concentration. In all equations, the selectivity coefficient was highly significant, indicating 
that the large metropolitan areas chosen for study are considerably more segregated than the 
smaller ones we left out, creating a selection bias that was corrected by using the technique 
of Olsen (1980). 

Conclusion 

Many earlier studies have documented the persistent and high degree of black residential 
segregation in U.S. metropolitan areas (Duncan and Duncan, 1957; Farley, 1977; Massey, 
1979; Massey and Denton, 1987; Sorensen, Taeuber, and Hollingsworth, 1975; Taeuber 
and Taeuber, 1965). This investigation not only confirms these earlier studies but suggests 
that black segregation is even more extreme than previously imagined. By focusing on the 
index of dissimilarity, and more recently on measures of exposure, earlier work has under- 
stated the unique situation of blacks in American urban areas and has not appreciated the 
full extent of their segregation in U.S. society. Alone among U.S. minority groups, blacks 
often face conditions of hypersegregation. 

Being black not only greatly accentuates the level of segregation on any single dimension 
but also increases markedly the dimensionality of segregation, generating an accumulation 
of segregation across multiple dimensions simultaneously. From our descriptive analyses, 
we identified a significant core of 10 large metropolitan areas within which blacks are very 
highly segregated on at least four dimensions of residential segregation. These areas contain 
29 percent of all urban blacks in the United States. They include Baltimore, Chicago, 
Cleveland, Detroit, Milwaukee, and Philadelphia-which are highly segregated on all five 
dimensions-as well as Gary, Los Angeles, New York, and St. Louis-which are highly 
segregated on four dimensions. 

In no SMSA were Hispanics highly segregated on more than three dimensions simul- 
taneously, and in 37 of the 60 SMSAs, they were not highly segregated on any dimension 
at all. Even in large Hispanic settlements such as Los Angeles, Miami, San Antonio, San 
Francisco, and San Diego, segregation was low or moderate on all dimensions. In other 
words, not only is the average level of Hispanic segregation lower on any given dimension, 
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but there is a striking absence of the multidimensional layering of high segregation across 
dimensions. To be sure, layering does occur in a few cities; but it is always at a moderate 
level. In SMSAs such as San Antonio, Miami, and Corpus Christi, Hispanics are moderately 
but consistently segregated across all five dimensions, implying a more restricted social 
environment than if they displayed low segregation on some dimensions. Hispanics never, 
however, display both multidimensional layering and high segregation. 

Blacks are thus unique in experiencing multidimensional hypersegregation. The con- 
trast between them and Hispanics is not easily explained by different socioeconomic char- 
acteristics, varying population sizes, different regional locations, or contrasting metropolitan 
conditions. Although our models cannot eliminate the view that some unmeasured objective 
factor accounts for the discrepancy between blacks and Hispanics, the models lend credence 
to the view that blacks remain the object of significantly higher levels of Anglo prejudice 
than Hispanics. Two decades after the 1968 Civil Rights Act, blacks still have not achieved 
the freedom to live where they want. 

These results underscore the complexity of urban segregation patterns and the extent 
to which they have been oversimplified in the past by using one or two indices. Groups 
differ not only in the degree of their segregation but also in the dimensional structure of 
their segregation. A minority that is highly segregated on only one dimension is "less 
segregated," in a very real sense, than one highly segregated on five. Likewise, a group that 
is moderately segregated on five dimensions is "more segregated" than one displaying low 
levels on four and a moderate level on the fifth. Recognizing five distinct dimensions of 
segregation yields considerably more information than using one dimension by itself. 

An appreciation of the multidimensional structure of segregation is especially important 
in the case of blacks. Segregation becomes more profound as it accumulates across dimen- 
sions, and hypersegregation across five dimensions simultaneously implies a level of spatial 
isolation that is much greater than heretofore recognized. From studies based on the index 
of dissimilarity, it has been known for some time that blacks are unevenly distributed in 
many metropolitan areas, meaning that most tracts where blacks live contain a dispropor- 
tionate number of black residents. Our results, however, paint a more extreme picture. Not 
only are blacks in our largest cities disproportionately likely to share tracts with other blacks, 
they are very unlikely to share a tract with any whites at all. Moreover, if they go to the 
adjacent neighborhood, or to the neighborhood adjacent to that, they are still unlikely to 
encounter a white resident. These agglomerations of monoracial tracts are densely settled 
and geographically restricted, comprising a small portion of the urban environment closely 
packed around the city center, a zone known for poverty and social disorganization long 
before blacks arrived there (Park and Burgess, 1925). 

This extreme level of residential segregation across multiple dimensions is important 
because of the social isolation it implies. For blacks in large ghettos of the north, this 
isolation must be extreme. Unless a resident of these ghettos works in the Anglo-dominated 
economy, he or she is unlikely to come into contact with anyone other than another black 
ghetto-dweller. Indicators of the accompanying social isolation are not hard to find. Over 
the past decade, black ghetto speech has grown progressively more distant from the standard 
English spoken by most non-Hispanic whites (cf. Labov, 1972; Labov and Harris, 1986), 
and black marriage, fertility, and family patterns have diverged more sharply from the 
mainstream (Espenshade, 1985; Farley, 1984; Farley and Allen, 1987; Pratt et al., 1984). 
Over the same period, poverty, labor force withdrawal, and unemployment have come to 
be increasingly concentrated in inner-city black neighborhoods (Wilson, 1987), particularly 
for young men (Lichter, 1988). Our results suggest that the extremity of black residential 
segregation and its unique multidimensional character may help explain the growing social 
and economic gap between the black underclass and the rest of American society. 
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