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THE LEGISLATIVE DEFENDANTS’> RESPONSE TO PLAINTIFFS’
OPPOSED MOTION TO EXCLUDE EXPERT REPORT AND
EXPERT TESTIMONY OF DR. JOWEI CHEN

Both New Mexico law and the legislative history of SB-1 reflect that oil and gas are critical to

the State of New Mexico:

if water is the life blood of New Mexico’s agricultural and domestic activity, so it
may be said that oil and gas are the fuel that keeps New Mexico’s economy moving.

Kennedy v. Yates Petroleum Corp., 1986-NMSC-064, q 9, 104 N.M. 596. During SB-1’s path to
enactment, senators and representatives debated and advocated for expanding congressional
representation for New Mexico’s oil and gas producing areas. Reduced to its essence, Plaintiffs
seek to exclude Dr. Chen because they take issue with that public policy. Dr. Chen was instructed
to take into account the same policy consideration—the importance of oil and gas to New Mexico—
as was considered by the People’s elected representatives. The Legislature is not bound to any
“traditional districting principles” when drawing congressional districts and its decision to pursue
different public policies than advocated by Plaintiffs does not provide a constitutional basis for
striking down a duly enacted district map. Nor does it occasion excluding Dr. Chen for utilizing
those same public policies to render his opinions. For these reasons, and as more fully set out below,

Plaintiffs’ Motion should be denied.



1. STATEMENT OF RELEVANT FACTS

1.1. The Legislative Defendants’ counsels’ instruction to Dr. Chen to incorporate
oil and gas considerations is supported by legislative history.

1. Dr. Chen’s Expert Report clearly and unambiguously discloses to the Court that

Defendants’ counsel informed me that due to the economic importance of the oil
production industry in New Mexico, a policy consideration in the state’s
congressional districting process was to spread out the state’s oil wells across
multiple districts. Therefore, Defendants’ counsel instructed me to require that no
single congressional district in any computer-simulated plan contains more than
60% of the state’s active oil wells. I was instructed to use geospatial data from New
Mexico’s Oil Conservation Division to identify the locations of all active oil wells in
the state.

[Report §9(f)]

2. Legislative history reflects that oil and gas considerations were debated and
advocated for by members of the Legislature in the passage of SB-1. [Leg. Defs. FFCL, Exh. 27, p.
10 Sen. JC 3:25-4:5, p. 25 Sen. DI 2:24-3:8, p. 31 Rep. GC 2:12-2:23, p. 55 Sen. JC 2:1-2:9, p. 57
Rep. AM 2:1-2:16, p. 59 Rep. NS 2:1-2:10]

1.2. Dr. Chen utilized a Markov Chain Monte Carlo version of a Sequential Monte
Carlo algorithm to create 1,000 documented and testable simulations that
were provided to Plaintiffs.

3. Dr. Chen’s Expert Report states that he “programmed a partisan-blind computer
algorithm to generate a large number of random districting plans....” [Report q 5]
4. At his deposition, Dr. Chen testified that his simulations utilized a Markov Chain

Monte Carlo (“MCMC”) version of a Sequential Monte Carlo (“SMC”) algorithm. [Exh. A, Dep.
JC16:21-18:23]
5. Dr. Chen’s source code, produced to Plaintiffs prior to his deposition, reflects his

use of the algorithms. [See, e.g., Exh. B at lines 69 & 268]
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6. MCMC and SMC Algorithms have been utilized in statistical sciences for decades
and are the subjects of textbooks in those fields. [Exh. A at 116:25-119:9]

7. Dr. Kosuke Imai’s article titled “The Essential Role of Empirical Validation in
Legislative Redistricting Simulation,” proffered a computationally generated dataset for testing
simulation methods and then “empirically examine[d] how existing simulation methods perform
on realistic validation datasets.” [Motion Exh. 37 at 52] Dr. Imai’s article establishes that MCMC
algorithms like Dr. Chen’s are more performant and reliable than competing algorithms. [/4. at pp.
53, 63, 64, 65]

8. Dr. Imai, who is also the author of the Redist simulation software that Mr. Trende
says he attempted to use in this litigation, advocates for the use of an SMC algorithm in redistricting
litigation. [Exh. C, “Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans”; Exh. D, Dep. ST 121:19-122:7 (addressing same)|

9. Dr. Imai recognizes that SMC algorithm-generated simulations have a tendency to
be identical, e.g., “for redistricting, this means that all of the sampled plans will share one or more
districts that are completely identical,”! [Exh. C at 18], and that “[o]ne interesting avenue for future
research would be to examine whether several applications of the MCMC kernel at various points
in the SMC algorithm could help refresh the sample and counteract the tendency to collapse to a
single ancestor.” [/d. at 19]

10.  Dr. Chen’s implementation of the MCMC version of an SMC algorithm did not
result in any duplicated maps. [Exh. D, Dep. ST 54:17-55:17 (falsely testifying that Dr. Chen’s

simulations contain duplicates), 136:6-136:20 (correcting his mistaken testimony) |

! For example, Mr. Trende has testified that his use of the Sequential Monte Carlo algorithm in
Redist resulted in an approximate 50% duplication rate, or 1,020,000 of the simulated maps he
claims to have created.
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2. ARGUMENT

2.1. New Mexico’s Legislature is not bound by any redistricting criteria and
Plaintiff’s claim that expert analysis of the policies underlying the
Legislature’s decisions is unhelpful to the factfinder is inconsistent with the
New Mexico Supreme Court’s September 22, 2023 decision.

Reduced to its essence, Plaintiffs’ challenge to Dr. Chen’s expert report and opinions is that
they are based upon the Legislature’s policy decisions relating to the oil and gas industry that are
not found in Plaintiffs’ preferred and irrelevant “traditional redistricting criteria.” On Friday,
September 22, 2023, at 4:21 PM, the New Mexico Supreme Court issued its decision in Grisham
v. Van Soelen, No. S-1-SC-39481 (the “Decision”).? The Court held that “neither Maestas nor the
Redistricting Act is a source of redistricting standards that bind the Legislature.” Id. q 46.
“Maestas...only mandates the use of ‘traditional districting principles’ for court-drawn plans when
the political branches have failed to reach agreement.” /4. (emphasis in original). Likewise, “[t]he
Redistricting Act, although requiring the Citizen Redistricting Committee to prepare and submit
nonpartisan redistricting plans to the Legislature, specifies that those plans are merely
recommendations which the Legislature is not required to follow.” /4.

Notwithstanding the law, Plaintiffs criticize Dr. Chen’s opinion because

[flor the “extreme outlier approach” to demonstrate the partisan effect of a
redistricting map-and therefore, to aid the trier of fact in determining a relevant
issue in a partisan-gerrymandering case-the simulated maps must adhere only to the
State’s partisan-neutral redistricting “criteria.”

[Motion p. 9 (emphasis added and citations omitted). Likewise, Plaintiffs complain that “New
Mexico’s redistricting guidelines make no mention of any ‘Oil Industry Considerations’ at all....”

[Zd. p. 11] Plaintiffs’ contentions that the Legislature is moored to alleged traditional redistricting

2 Plaintiffs’ Motion was filed on September 22, 2023, at 10:41 PM, six hours and twenty minutes
after being served with the Decision.
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criteria, partisan-neutral redistricting criteria, or redistricting guidelines is at odds with the

Decision and should be disregarded.

2.2. Dr. Chen’s expert report and opinions will assist this court in determining
that SB-1 is not an impermissible partisan gerrymander.

Plaintiffs’ Motion should be denied because it does not and cannot demonstrate that Dr.
Chen’s expert report and opinions are unhelpful to the Court. Plaintiffs do not challenge Dr. Chen’s
expert work based upon his qualifications or a supposed lack of reliability; instead, they assert that
Dr. Chen’s work will not assist the trier of fact. [Motion p. 7, citing Rule 11-702] Plaintiffs’
misplaced parade of horribles—that Dr. Chen’s work “does not relate to any issue in this case,” is
not “sufficiently tied to the facts of the case,” and that his factual “assumptions are unsupported
by the evidence”—ignore and belittle the evidence in this case. [Motion pp. 7-8] The Legislative
Defendants have put forward evidence that Plaintiffs’ counsels’ instruction to Dr. Chen to
incorporate oil and gas considerations into his expert work is supported by the legislative history of
SB-1.3 [Fact No. 2] Dr. Chen’s expert work is consistent with and fits the facts of this case and
proves what it purports to prove: SB-1 is not a partisan gerrymander. State ». Downey, 2008-

NMSC-061, q 30, 145 N.M. 232. Plaintiffs’ Motion should be denied.

2.3. McConchie ». Schols stands for the proposition that parties have the burden of
justifying instructions to their experts.

Unfortunately, but not surprisingly, Plaintiffs have misrepresented the per curiam decision
McConchie v. Scholz, 577 F.Supp.3d 842 (N.D.IIl. 2021) in an effort to criticize Dr. Chen. In that
case, the plaintiffs asserted that the apportionment of the Illinois House and Senate districts diluted

Latino or Black votes. /4. at 868. The plaintiffs’ counsel instructed Dr. Chen to identify elections

3 Compare the circumstance of Dr. Chen’s testable expert work being supported by legislative
history with the expert report and opinions of Mr. Trende who can provide nothing more than
ipse dixit and an assurance of “trust me” as the basis for his opinions.
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satisfying four criteria, and he did so. /4. at 869. Contrary to the misrepresentations of Plaintiffs,

the district court did not criticize Dr. Chen’s work. Instead, the trial court noted that it

agree[d] with the view that Dr. Chen’s analysis examines elections “chosen
according to the Plaintiffs’ counsel’s arbitrary and biased criteria provided to him.”
[McConchie, 171-1 (Lichtman Expert Report) at 37]. For example, his method does
not distinguish between probative and endogenous state legislative elections and
exogenous elections, as well as eliminates any election featuring coalition voting.
See [7d. at 83] By repeating Dr. Chen’s findings without addressing any of these
shortcomings, McConchie Plaintiffs have not offered a persuasive rationale for why
their sample helps our analysis.

Id. Plaintifts’ first misrepresentation is that “Dr. Chen decided to include improper assumptions
into an expert report at the request of counsel.” [Motion p. 14] In both McConchie and this matter,
Dr. Chen followed the instructions of counsel regarding criteria for scientific analysis: he did not
“decide” those criteria. Plaintiffs’ second misrepresentation is that the “[t]he court found Dr.
Chen’s expert report unpersuasive, however, because ‘Dr. Chen’s analysis’ about minority voting
‘examines elections chosen according to the Plaintiffs’ counsel’s arbitrary and biased criteria
provided to Dr. Chen.’” [Id.] As reflected in the text of the opinion, and looking past Plaintiffs’
deceptive editing of that text, the district court did not find Dr. Chen’s expert report unpersuasive.
Plaintiffs’ third misrepresentation is that “the court concluded ‘Dr. Chen’s findings’ had not
‘offered a persuasive rationale’ that ‘helps the Court’s analysis’ of the plaintiffs’ claims.” [/4.]
Again, looking beyond Plaintiffs’ casual mendacity regarding the text of the decision, the district
court decision reflects that Plaintiffs, not Dr. Chen, had not offered a persuasive rationale for why
their sample would help the court. Unlike McConchie, the Legislative Defendants have offered a
persuasive rationale for the inclusion of oil and gas considerations in congressional redistricting.
Oil and gas are the fuel of New Mexico’s economy and the legislative history underlying SB-1
reflects the Legislature’s consideration of that fact. Kennedy v. Yates Petroleum Corp.,1986-NMSC-

064, 99,104 N.M. 596; [Fact No. 2] Plaintiffs’ Motion should be denied.
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2.4. Dr. Chen’s expert work is validated by the scholarly work of Dr. Kosuke Imai
and Plaintiffs’ vague criticisms and misapprehension of Dr. Imai’s scholarly
article are of no moment.

Plaintiffs’ vague allegation that Dr. Chen’s work has not been validated is untrue. Plaintiffs
vaguely reference “serious validation concerns with Dr. Chen’s expert report that Plaintiffs intend

to explore at trial” [Motion p. 1], and claim that he did not

“validate[]” the computer algorithm that he wrote and used in his report “against
a known sample set” ... “which is a necessary step in determining whether the

algorithm produces a random (and, therefore, reliable) sample of simulated maps....

({94

Indeed, “the empirical validation of simulation methods” like Dr. Chen’s “is

essential for the credibility of academic scholarship and expert testimony in court.”

[Motion at 1, 5]

Dr. Imai’s article, “The Essential Role of Empirical Validation in Legislative Redistricting
Simulation,” validates Markov Chain Monte Carlo (“MCMC”) algorithms like Dr. Chen’s. As
reflected in the article’s abstract, Dr. Imai utilized his proposed dataset to “empirically examine
how existing simulation methods perform” and determined that MCMC algorithms are more
reliable and performant that other algorithms. [Fact No. 7] Additionally, Dr. Imai acknowledges
that Sequential Monte Carlo redistricting algorithms, such as the one used by Mr. Trende in the
Redist software, are plagued with duplicate simulations. [Fact No. 9] Dr. Chen’s 1,000 simulations,
relying on his implementations of the peer-reviewed MCMC algorithm and the peer-reviewed
SMC algorithm, do not suffer from that ailment. [Fact No. 10] Dr. Chen’s algorithms are peer
reviewed and validated by the very source that Plaintiffs seek to criticize him with. Their arguments
to the contrary are unavailing.

WHEREFORE the Legislative Defendants respectfully request that the court deny Plaintiffs’
Motion to Exclude the Expert Report and Expert Testimony of Dr. Jowei Chen and such other and

further relief as the Court deems just and proper.
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Respectfully Submitted,

HINKW/LD ’
By:

ichard E. Olson
cas M. Williams
Ann C. Tripp
P.O. Box 10
Roswell, New Mexico 88202-0010
(575) 622-6510

PEIFER, HANSON, MULLINS &
BAKER, P.A.

Sara N. Sanchez

20 First Plaza, Suite 725
Albuquerque, New Mexico 87102
(505) 247-4800

STELZNER, LLC

Luis G. Stelzner

3521 Campbell Ct. NW
Albuquerque, New Mexico 87104
(505) 263-2764

PROFESSOR MICHAEL B. BROWDE
751 Adobe Rd. NW
Albuquerque, New Mexico 87107

(505) 266-8042

Attorneys for the Legislative Defendants
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CERTIFICATE OF SERVICE

Pursuant to Rule 1-005(E) NMRA, The Legislative Defendants’ Response to Plaintiffs’
Opposed Motion to Exclude Expert Report and Expert Testimony of Dr. Jowei Chen was served

on the following on September 25, 2023, by the method reflected:

Person Served Method

All counsel of record Via Efile/Eserve and Email

Respectfully Submitted,

HINKL R LLP

By: 4/ | [
£as M. Williams
.0. Box 10
Roswell, New Mexico
(575) 622-6510 telephone
(575) 623-9332 facsimile

Attorneys for the Legislative Defendants
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STATE OF NEW MEXICO
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REPUBLICAN PARTY OF NEW MEXICO, DAVID
GALLEGOS, TIMOTHY JENNINGS, DINAH
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Senate, MIMI STEWART, in her official

capacity as President Pro Tempore of the

New Mexico Senate, and JAVIER MARTINEZ,

in his official capacity as Speaker of

the New Mexico House of Representatives,
Defendants.

VIDEO-RECORDED ZOOM DEPOSITION OF JOWEI CHEN, Ph.D.
September 10, 2023
12:30 P.M. - 5:55 P.M.

PURSUANT TO THE NEW MEXICO RULES OF CIVIL
PROCEDURE, this deposition was:
TAKEN BY: MOLLY DIiRAGO
Attorney for PLAINTIFFS

REPORTED BY: Sarah R. Padilla, RPR, CSR, NM CCR#525
TRATTEL COURT REPORTING & VIDEOGRAPHY
P.0. BOX 36297
ALBUQUERQUE, NEW MEXICO 87176

Trattel Court Reporting & Videography
505-830-0600

Electronically signed by Sarah Padilla (201-279-371-8635) 2552¢766-6e30-4fe7-abd0-b0aell1922acc
Exh. A.1



Republican Party of New Mexico, et al. v. Maggie Toulouse Oliver, et al. September 10, 2023
Jowei Chen, Ph.D. D-506-CV-2022-00041

Page 16
partisan-neutral map drawing process, adhering to a
certain nonpartisan-districting criteria; correct?
A Yes.

Q And your conclusion -- spoiler alert, if no one

plausibly have emerged from a partisan-neutral map
drawing process, adhering to nonpartisan-districting

1
2
3
4
5 has read your report -- is that SB 1, indeed, could
6
7
8 criteria; correct?

9

A Right.
10 Q So beyond that question, you didn't look at
11 SB 1 for indications of partisan bias, did you?
12 A Not beyond the work that | have obviously
13 described in my report.
14 Q Okay. I'mgoing to move on to paragraph 5,
15 your summary of findings. You say, "l programmed a

16 partisan blank and computer algorithm to generate a
17 large number of redistricting plans while strictly
18 adhering to the aforementioned districting criteria";

19 correct?

20 A Yes.
21 Q s that partisan-blank computer algorithm a
22 construct of Monte Carlo algorithm?
23 A No.
24 Q What is that algorithm?
25 A Itisan MCMC version of a Sequential Monte
Trattel Court Reporting & Videography
505-830-0600
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Carlo.

Q What do you mean by an MCMC version?

A So in the context of redistricting simulations,
what MCMC means is that it is iterative. So every
iteration -- and it is always going to be a large number
of iterations -- considers redraws in some ways to the
borders. These are, of course, random redraws; hence
why we call it an MCMC. MCMC, obviously refers to my
academic field. MCMC refers to Markov Chain Monte
Carlo. So MCMC is describing an algorithmic method
where a computer considers random changes or random
proposed changes to the borders of a districting plan
and their iterative; they are one after another, and
there is a long series of them in any typical MCMC
algorithm. And that is how mine proceeds.

Q Had you ever used an MCMC algorithm before your
expert work in the case?

A Yes.

Q Foracase -- a prior case you used MCMC?

A Yes.

Q What case was that?

A There is so many that I'm not sure I can list
them all. But I'm going to refer you to paragraph 3
where | have listed out prior cases in which | have

produced an expert report in which | have authored an

Page 17
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1 expert report. And | would just generally say that
2 pretty much all the recent ones over the past roughly
3 five years | have been using an MCMC algorithm.
4 Q What algorithm did you use before that?
5 A So | would have to go way back to identify a
6 case where | used an algorithm that is not an MCMC. |
7 can definitely say that for the past five years, they
8 have all been MCMC algorithms. | think way back when |
9 started producing simulations as an -- in expert witness
10 reports over ten years ago, | certainly used an earlier
11 algorithm that was not an MCMC.
12 Q Why did you discontinue using that earlier
13 algorithm?
14 A Well, my academic work has developed since
15 then. | have done a lot more work in developing
16 redistricting algorithms and have found ways that
17 produce plans that are more targeted at getting at
18 specific redistricting criteria, getting at equal
19 population, for example. And | found that changes to
20 the algorithm helped that along to help achieve certain
21 criteria. | would say that has been the biggest driving
22 factor behind developments in redistricting -- well, in
23 certainly the work that | do in simulation algorithms.
24 Q Okay. Let's look at paragraph 7. So you
25 generated 1,000 computer-simulated maps as part of your
T o
Electronically signed by Sarah Padilla (201-279-371-8635) 25520766-6e30-4fe7-abd0-b0ae11922acc

Exh. A4



Republican Party of New Mexico, et al. v. Maggie Toulouse Oliver, et al. September 10, 2023

Jowei Chen, Ph.D. D-506-CV-2022-00041
Page 116
1 A | was not asked to analyze that question. And
2 SO0 my answer to your question is I don't know because |
3 have not analyzed that question.
4 Q | know what your answer is going to be, but I'm
5 going to ask this anyway.
6 If you were going to gerrymander the New Mexico
7 congressional map to be more favorable to Democrats,
8 what would you do?
9 A | don't know because that question has not
10 been -- obviously, I was not asked to analyze that
11 question, so | just don't know.
12 Q Okay. I can't promise that I'm done, but |
13 would like to take another break, and hopefully we can
14 finish soon.
15 THE VIDEOGRAPHER: The time is 5:35 p.m. We
16 are going off the record.
17 (Recess.)
18 THE VIDEOGRAPHER: The time is 5:50 p.m. We
19 are back on the record.
20 Ms. DiRago: Okay. And I actually do not have
21 any more questions for you, Dr. Chen. So thank you.
22 THE WITNESS: Thank you, Ms. DiRago.
23 EXAMINATION
24 BY MR. WILLIAMS:
25 Q Dr. Chen, do you recall when Ms. DiRago was
T o
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1 asking you questions about your use of SMC, Sequential
2 Monte Carlo, algorithms?
3 A Yes.
4 Q AnNd do you recall Ms. DiRago asking you
5 questions about your use of MCMC or Monte -- or excuse
6 me -- Markov Chain Monte Carlo algorithms?
7 A Yes.
8 Q Do you recall Ms. DiRago asking you questions
9 based upon the premise that SMC algorithms were invented
10 in 20177
11 A Yes.
12 Q Isn't it true that SMC algorithms have existed
13 long prior to 2017?
14 A Yes.
15 Q Isn't it true that Markov Chain Monte Carlo
16 algorithms have existed long prior to 2017?
17 A Yes.
18 Q | want to show you what | am marking as
19 Exhibit 3 to this deposition.
20 (Exhibit 3 was marked.)
21 BY MR. WILLIAMS:
22 Q Tell me when you see that on your screen,
23 Dr. Chen.
24 A | see that.
25 Q Is that an Amazon page for a text on Statistics
T o
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1 for Engineering and Information Science?
2 A Yes, it sure looks like it.
3 Q And is that titled, "Sequential Monte Carlo
4 Methods in Practice"?
3) A Yes.
6 Q That is a 2001 edition, according to Amazon; is
7 that correct?
8 A Correct.
9 Q Iam going to show you what I am marking as
10 Exhibit 4 to this deposition. Maybe | am.
11 (Exhibit 4 was marked.)
12 BY MR. WILLIAMS:
13 Q Here we go. Goodness, | have used the wrong
14 document. All right. I'm going to just show you --
15 that is what you get when you accidentally delete an
16 exhibit that you created during a deposition. All
17 right. | am going to share with you a different screen,
18 and hopefully the Amazon bot doesn't give away all of my
19 shopping history to you guys. But let's look at "Markov
20 Chain Monte Carlo in Practice."” Do you see that text
21 displayed on the screen?
22 A Yes.
23 Q And that is a text related to the use of Monte
24 Carlo -- or excuse me -- Markov Chain Monte Carlo in
25 practice as it relates to interdisciplinary statics?
T o
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1 A That is what it looks like, yes.
2 Q And the publication date on that document is
3 19967
4 A Yes.
5 Q Would it be fair to say, Dr. Chen, that no
6 person serious about statistics would challenge Markov
7 Chain or Sequential Monte Carlo algorithms as being peer
8 reviewed and well accepted?
9 A Correct.
10 Q Allright. I have no further questions.
11 Ms. DiRago: Neither do I.
12 MR. WILLIAMS: We will read and sign.
13 THE VIDEOGRAPHER: Can we get transcript orders
14 on the record, please.
15 MR. WILLIAMS: E-tran for the defendants.
16 Ms. DiRago: Same for us. And can we get
17 something expedited?
18 THE COURT REPORTER: When do you need it by?
19 Ms. DiRago: What's the soonest you can get it
20 to us?
21 THE COURT REPORTER: Do you want to do this off
22 the video record?
23 Ms. DiRago: Yes.
24 THE VIDEOGRAPHER: This concludes the
25 deposition of Jowei Chen, Ph.D. We are going off the
T o
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package base;

import java.awt.Point;

import java.awt.Polygon;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;
import java.io.PrintWriter;

import java.net.InetAddress;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.UnknownHostException;
import java.util.ArraylList;

import java.util.Arrays;

import java.util.Comparator;
import java.util.Date;

import java.util.lList;

import java.util.Random;

import java.io.*;

import java.util.HashMap;

import java.util.Random;

import java.lang.Math;

import java.text.SimpleDateFormat;
import java.text.DateFormat;
import java.net.*;

import java.awt.Toolkit;

import java.lang.Thread;

import static java.nio.file.StandardCopyOption.*;
public class NM_base_final{
public static void main (String[] args) {while(true){new NM_base_final().run();}}

private ArrayList AllPcts = new ArrayList();

private ArraylList pctABQ=new ArraylList(); private ArraylList CRUpcts=new ArraylList();
private ArraylList SFEpcts=new ArraylList(); private ArraylList SVApcts=new ArrayList();

private ArraylList pctpop = new ArrayList(); private ArrayList pctcty = new ArraylList();
private ArrayList pctname = new ArrayList();

private ArrayList pctoil=new ArraylList(); private ArrayList pctmcds = new ArrayList();
private ArraylList pctad=new ArrayList(); private ArraylList pctvtd=new ArrayList();

private ArraylList ALLctys = new ArraylList(); private HashMap ALLctyct = new HashMap();
private ArraylList ALLmcds = new ArraylList(); private HashMap ALLmcdct = new HashMap();
private ArrayList ALLvtds = new ArrayList(); private HashMap ALLvtdct = new HashMap();
private HashMap CtoPcts = new HashMap(); private HashMap PairLengths = new HashMap();
private ArraylList pctborders = new ArrayList();

private ArrayList pctarea = new ArrayList(); private ArraylList extlengths=new
ArrayList();

private HashMap PctToPts=new HashMap();

private ArraylList minlats = new ArrayList(); private ArraylList maxlats = new
ArrayList();
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private ArraylList minlons = new ArraylList(); private ArraylList maxlons = new
ArrayList();

private ArraylList lats = new ArrayList();
private ArraylList lons = new ArrayList();
private boolean plan_completion;

private File mainfile; private double threshold; private int enactctyfrags; private int
enactmcdfrags; private int enactintctys; private int enactintmcds;

private int CApop = @; private double IdealDistrictPop; private double MAXNUMDEV;
private double MINPOP; private double MAXPOP; //inclusive min/max

private File outputfolder; private File outputfolder5;private String type; private File
zero; private String hname="zzzzz"; boolean AbortSignal=false; private File logfile;

private boolean COMPLETE; private String st;
private double ABQthreshold; private double OILTHRESHOLD;

private ArraylList pctCVAP = new ArraylList(); private ArraylList pctCVblack = new
ArrayList(); private ArrayList pctCVhisp = new ArraylList();

private double Bth; private double Hth; private double th_psby=new Double(0.085867);
private ArraylList AlreadySplitMcds; private int simct; private int addon;

public void run(){

//ArrayList test = new ArraylList(); test=null; System.out.println("test:
"t+test.size()); System.exit(9);

try{hname=InetAddress.getLocalHost().getHostName(); }catch (UnknownHostException ex)
{System.out.println("Hostname can not be resolved");}

System.out.println(":::::::::::::::: :STARTING MCMC ALGORITHM
HERE::::::scrsorsscsizeee:™); //Toolkit.getDefaultToolkit().beep();

File folder = new File("C:/Dropbox/NM");

File folder4 = new File("/home/jowei/Desktop/NM"); if(folder4.exists())

{folder=folder4;}

File folder2
{folder=folder2;}

File folder3 = new File("/home/jowei/shares/turbo/NM"); if(folder3.exists())
{folder=folder3;}

//File folder3
{folder=folder3;}

//File folder3

new File("/nfs/turbo/lsa-jowei/NM"); if(folder2.exists())

new File("E:/home/jowei/Desktop"); if(folder3.exists())

new File("/mnt/jowei"); if(folder3.exists()){folder=folder3;}

//File folder5 = new File("D:"); if(folder5.exists()){folder=folder5;}

Random generator = new Random(); //simid=100000+generator.nextInt(899999); //int
group = l+generator.nextInt(40);

mainfile=new File(folder,"base"); int districts=3;

//threshold=new Double(0.01);

type = "vi4"; //type="race"; //if(generator.nextDouble()>new Double(0.5)){type =
"race";}

outputfolder=new File(mainfile,type); outputfolder.mkdir();

outputfolder5=new File(outputfolder,"fin"); outputfolder5.mkdir();

zero=new File(outputfolder, "seed.txt"); if(zero.exists()){System.exit(®);}

ReadBaseFiles(mainfile);

IdealDistrictPop=new Double(CApop) / new Double(districts); //IdealDistrictPop=new
Double(59532.51);

threshold=new Double(0.00001); ABQthreshold=new Double(@.6); OILTHRESHOLD=new
Double(@.6); simct=0;
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//ArrayList intmcds=getIntactMcds(pcts); intactmcds+=intmcds.size();
Dimcds[d]=intmcds.size();

}  //System.out.println("BLACKDISTS: "+blackdists+" HISPDISTS: "+hispdists);

System.out.println("plan_maxdev: "+plan_maxdev+" statewide pop: "+CApop+" threshold:
"+threshold );

//System.out.println("Dictys: "+Arrays.toString(Dictys));
int old_score = 9;

//System.out.println("ALLmcds.size(): "+AlLLmcds.size()+" enactspmcds:
"+enactspmcds+" enact_intmcds: "+ (ALLmcds.size()-enactspmcds) +" intactmcds: "+intactmcds+"
old_psby: "+old_psby);

System.out.println("ALLctys.size(): "+ALLctys.size() +" intactctys: "+intactctys+"
intactmcds: "+intactmcds+" old_psby: "+old_psby);

System.out.println("Dictys: "+Arrays.toString(Dictys)); System.out.println("Dimcds:
"+Arrays.toString(Dimcds));

//System.out.println("Dcorepop: "+Arrays.toString(Dcorepop));
System.out.println("ctyfrags: "+ctyfrags);

int old_intactctys=intactctys; int old_intactmcds=intactmcds;

MCD(Dpcts, districts);

System.out.println("SFE: "+SFEdistrict);
System.out.println("CRU: "+CRUdistrict);
System.out.println("SVA: "+SVAdistrict);
System.out.println("“ABQ: "+ABQdistrict+" frac: "+ABQfrac);

int satisfy=0; File outfolder=new File("");

//if( ABQdistrict!=SFEdistrict && ABQdistrict!=CRUdistrict &&
CRUdistrict!=SFEdistrict && ABQdistrict>@ && ABQfrac>ABQthreshold &&
(plan_maxdev/IdealDistrictPop)<threshold){ satisfy=6; outfolder=outputfolderR; }

if(ABQdistrict!=SFEdistrict && ABQdistrict!=CRUdistrict && CRUdistrict!=SFEdistrict
&& SVAdistrict==RGRdistrict && ABQdistrict>@ && ABQfrac>ABQthreshold &&
(plan_maxdev/IdealDistrictPop)<threshold){

satisfy=999;
}

if(satisfy!=999){return;}

//System.out.println("plan_maxdev: "+plan_maxdev); //System.exit(@);

//System.exit(®@);
//simct=0; return;

System.out.println("=== = PART 2: MCMC iterations: IMPROVE on
COMPACTNESS........ time: "+(new Date()).getTime()); //if(zero.exists()){System.exit(@);}

double avgpolsby = (polsbys[1]+polsbys[2]+polsbys[3])/new Double(districts);

int iters=0;
while(true){ iters++; 1if(iters>1000){break;}
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1 Introduction

In first-past-the-post electoral systems, legislative districts serve as the fundamental building block of democratic
representation. In the United States, congressional redistricting, which redraws district boundaries in each state
following the decennial Census, plays a central role in influencing who is elected and hence what policies are
eventually enacted. Because the stakes are so high, redistricting has been subject to intense political battles.
Parties often engage in gerrymandering by manipulating district boundaries in order to amplify the voting power
of some groups while diluting that of others.

In recent years, the availability of granular data about individual voters has led to sophisticated partisan
gerrymandering attempts that cannot be easily detected. At the same time, many scholars have focused their
efforts on developing methods to uncover gerrymandering by comparing a proposed redistricting plan with a
large collection of alternative plans that satisfy the relevant legal requirements. A primary advantage of such an
approach over the use of simple summary statistics is its ability to account for the characteristics of each state’s
physical and political geography and state-specific redistricting rules.

For its successful application, a sampling algorithm for drawing alternative plans must (1) be efficient enough
to scale to maps with thousands of geographic units and a moderate or large number of districts, (2) simultane-
ously incorporate a variety of real-world legal constraints such as population balance (Section 3.1), geographical
compactness (Section 3.3), and the preservation of administrative boundaries (Section 4.5), and (3) ensure these
samples are representative of a specific target population, against which a redistricting plan of interest can be
evaluated. Although some have been used in several recent court challenges to existing redistricting plans, all
existing algorithms run into limitations of varying severity with regards to at least one of these three key require-
ments.

Optimization-based (e.g., Mehrotra et al., 1998; Macmillan, 2001; Bozkaya et al., 2003; Liu et al., 2016) and
constructive Monte Carlo (e.g., Cirincione et al., 2000; Chen and Rodden, 2013; Magleby and Mosesson, 2018)
methods can be made scalable and incorporate many constraints. But they are not designed to sample from any
specific target distribution. As a consequence, the resulting plans tend to differ systematically, for example, from
a uniform distribution under certain constraints (Cho and Liu, 2018; Fifield et al., 2020a,b). The absence of an
explicit target distribution makes it difficult to interpret the ensembles generated by these methods and use them
for statistical outlier analysis to detect gerrymandering.

MCMC algorithms (e.g., Mattingly and Vaughn, 2014; Wu et al., 2015; Chikina et al., 2017; DeFord et al.,
2021; Carter et al., 2019; Fifield et al., 2020a; Cannon et al., 2022) can in theory sample from a specific target
distribution, and incorporate constraints through the use of an energy function. In practice, however, existing
algorithms struggle to mix and traverse through a highly complex sampling space, making scalability difficult
and accuracy hard to prove. Some of these algorithms make proposals by flipping precincts at the boundary of
existing districts (e.g., Mattingly and Vaughn, 2014; Fifield et al., 2020a), rendering it difficult or even impossible
to transition between points in the state space, especially as more constraints are imposed. More recent algorithms
by DeFord et al. (2021) and Carter et al. (2019) use spanning trees to make their proposals, and this has allowed
these algorithms to yield greater moves and substantially improve mixing. Yet recent theoretical results suggest
that even these larger moves may not be enough to traverse the entire state space, and therefore may fail to
converge to the correct distribution, if a realistic population balance constraint is imposed (Akitaya et al., 2022).

We contribute to the ongoing scholarly efforts to address the above three key challenges by developing a
new Sequential Monte Carlo (SMC) algorithm, based on a similar but not identical spanning tree construction to
DeFord et al. (2021) and Carter et al. (2019) (see Sections 3 and 4). Like MCMC algorithms, the SMC algorithm
generates samples which approximate the target distribution arbitrarily well as the sample size increases. But
like constructive Monte Carlo methods, the SMC algorithm draws many separate plans from scratch, rather than
tweaking a single plan sequentially. This approach is better suited to the large discrete state space with a multi-
modal target distribution that characterizes redistricting problems. For example, in cases where existing MCMC
proposals render the state space disconnected, the SMC algorithm can still converge to the target distribution. As
we demonstrate in Sections 5 and 6 (see also Appendix B), this sampling approach translates to faster conver-
gence and smaller standard errors for a given computational budget. For larger and more complex redistricting
sampling problems, the SMC algorithm can be easily parallelized to facilitate efficient computation.
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The proposed algorithm proceeds by splitting off one district at a time, building up the redistricting plan piece
by piece (see Figure 2 for an illustration). Each split is accomplished by drawing a spanning tree and removing
one edge, which splits the spanning tree in two. We also extend the SMC algorithm so that it preserves admin-
istrative boundaries and certain geographical areas as much as possible, which is another common constraint
considered in many real-world redistricting cases. An open-source software package, redist, is available for
implementing the proposed algorithm (Kenny et al., 2020).

The SMC algorithm is not without limitations. Like existing MCMC approaches, the SMC algorithm only
guarantees convergence to the target distribution as the sample size approaches infinity. Additionally, because the
SMC algorithm involves repeated resampling, with a finite number of samples it can suffer from particle system
collapse (Liu et al., 2001), significantly increasing sampling variability. Thus, it is important to understand
the limitations of the proposed algorithm in finite samples, especially when dealing with large maps and many
districts. In Section 4.4.4, we provide a set of diagnostics which can be used in practice to help identify if more
samples are needed to reach convergence or if the constraints imposed by an analyst are too strong.

In Section 5, we validate the SMC algorithm using a small map for which all potential redistricting plans
can be enumerated (Fifield et al., 2020b). We demonstrate that the proposed algorithm samples accurately from
a realistic target distribution, and that our proposed diagnostics are a good proxy for total sampling error, which
is generally unobservable. Section 6 applies the SMC algorithm to the 2011 Pennsylvania congressional redis-
tricting, and also compares its performance on this problem with an MCMC algorithm with the same transition
kernel as the proposed SMC algorithm. We find that the SMC algorithm samples more efficiently than the
MCMC approach. Section 7 concludes and discusses directions for future work.

2 The 2011 Pennsylvania Congressional Redistricting

We study the 2011 Pennsylvania congressional redistricting because it illustrates the salient features of the re-
districting problem. We begin by briefly summarizing the background of this case and then explain the role of
sampling algorithms used in the expert witness reports.

2.1 Background

Pennsylvania lost a seat in Congress during the reapportionment of the 435 U.S. House seats following the 2010
Census. In Pennsylvania, the General Assembly, which is the state’s legislative body, draws new congressional
districts, subject to gubernatorial veto. At the time, the General Assembly was controlled by Republicans, and
Tom Corbett, also a Republican, served as governor. In the 2012 election, which took place under the newly
adopted 2011 districting map, Democrats won 5 seats while Republicans took the remaining 13. Under the
previous plan, the split was 7—12.

In June 2017, the League of Women Voters of Pennsylvania filed a lawsuit alleging that the 2011 plan adopted
by the Republican legislature violated the state constitution by diluting the political power of Democratic voters.
The case worked its way through the state court system, and on January 22, 2018, the Pennsylvania Supreme
Court issued its ruling, writing that the 2011 plan “clearly, plainly and palpably violates the Constitution of the
Commonwealth of Pennsylvania, and, on that sole basis, we hereby strike it as unconstitutional.” (League of
Women Voters v. Commonwealth, 2018).

The court ordered that the General Assembly adopt a remedial plan and submit it to the governor, who would
in turn submit it to the court, by February 15, 2018. In its ruling, the court laid out specific requirements that had
to be satisfied by all proposed plans:

composed of compact and contiguous territory; as nearly equal in population as practicable; and
which do not divide any county, city, incorporated town, borough, township, or ward, except where
necessary to ensure equality of population.

The leaders of the Republican Party in the General Assembly drew a new map, but the Democratic governor,
Tom Wolf, refused to submit it to the court, claiming that it, too, was an unconstitutional gerrymander. Instead,
the court received remedial plans from seven parties: the petitioners, the League of Women Voters; the respon-
dents, the Republican leaders of the General Assembly; the governor, a Democrat; the lieutenant governor, also
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(a) 2011 General Assembly map (b) 2018 Pennsylvania Supreme Court map

Figure 1: Comparison of the 2011 map drawn by the General Assembly and the final map imposed by the
Supreme court in 2018. County lines are shown in dark gray, and district boundaries that do not coincide with
county boundaries are in white.

a Democrat; the Democratic Pennsylvania House minority leadership; the Democratic Pennsylvania Senate mi-
nority leadership; and the intervenors, which included Republican party candidates and officials. Ultimately, the
Supreme Court drew its own plan and adopted it on February 19, 2018, arguing that it was “superior or compa-
rable to all plans submitted by the parties.” Figure 1 shows the remedial plan created by the Supreme Court as
well as the 2011 map adopted by the General Assembly, which were found on the court’s case page.

The constraints explicitly laid out by the court, as well as the numerous remedial plans submitted by the
parties, make the 2011 Pennsylvania redistricting a useful case study that evaluates redistricting plans.

2.2 The Role of Sampling Algorithms

The original finding that the 2011 General Assembly plan was a partisan gerrymander was in part based on
different outlier analyses performed by two academic researchers, Jowei Chen and Wesley Pegden, who served
as the petitioner’s expert witnesses. Chen randomly generated two sets of 500 redistricting plans according to
a constructive Monte Carlo algorithm based on Chen and Rodden (2013). He considered population balance,
contiguity, compactness, avoiding county and municipal splits, and, in the second set of 500, avoiding plans that
placed more than two incumbents in the same district (at least one pair of incumbents in the same district was
necessary, given that Pennsylvania lost a seat from 2000 to 2010). Pegden ran a reversible Markov chain similar
to that used in the MCMC algorithm of Mattingly and Vaughn (2014) for one trillion steps, and computed upper
bounds of p-values using the method of Chikina et al. (2017). This method was also used in a follow-up analysis
by Moon Duchin, who served as an expert for Governor Wolf (Duchin, 2018). Both petitioner experts concluded
that the 2011 plan was an extreme outlier according to compactness, county and municipal splits, and the number
of Republican and Democratic seats implied by statewide election results.

The respondents also retained an expert academic witness, Wendy Tam Cho, who directly addressed the
sampling-based analyses of Chen and Pegden. Cho criticized Chen’s analysis for not sampling from a specified
target distribution. She also criticized Pedgen’s analysis by arguing that his Markov chain only made local
explorations of the space of redistricting plans, and could not therefore have generated a representative sample
of all valid plans, though the p-values computed using the Chikina et al. (2017) method explicitly do not require
mixing of the Markov chain (see also Cho and Rubinstein-Salzedo, 2019, and Chikina et al. (2019)). We do not
directly examine the intellectual merits of the specific arguments put forth by the expert witnesses. However,
these methodological debates are also relevant for other cases where simulation algorithms have been extensively
used by expert witnesses (e.g., Rucho v. Common Cause (2019); Common Cause v. Lewis (2019); Covington
v. North Carolina (2017); Harper v. Lewis (2020)), and highlight the difficulties in practically applying existing
sampling algorithms to actual redistricting problems.

First, the distributions that some of these algorithms sample from are not made explicit, leaving open the
possibility that the generated ensemble is systematically different from the true set of all valid plans. Second,
even when the distribution is known, MCMC algorithms used to sample from it may be prohibitively slow to mix
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and cannot yield a representative sample. These challenges motivate us to design an algorithm that accurately
samples from a specific target distribution and incorporates most common redistricting constraints, while being
efficient and scalable.

3 Sampling Balanced and Compact Districts
3.1 The Setup

Redistricting plans are ultimately aggregations of geographic units such as counties, voting precincts, or Census
blocks. The usual requirement that the districts in a plan be contiguous necessitates consideration of the spatial
relationship between these units. The natural mathematical structure for this consideration is a graph G =
(V,E), where V. = {v1, va,...,v,} consists of m nodes representing the geographic units of redistricting and
E contains edges connecting units which are legally adjacent.

A labeled redistricting plan on G consists of n districts, where each district is a collection of nodes. A
labeled plan is described by a function £ : V. — {1,2,...,n}, where £(v) = i implies that node v is in
district 7. In practice, we will be interested in unlabeled plans, since the assignment of sets of precincts to
labels is arbitrary and has no impact on the real-world aspects of the district such as its population, demographic
composition, or partisan lean. Define an equivalence relation by £; = £ if there exists a permutation o such that
&1(v) = o(&(v)) for all v. Then, an unlabeled redistricting plan can be viewed as an equivalence class under =,
denoted [¢]; nothing in what follows will depend on the particular labeled plan representative &.

We let V;(£) and E;(€) denote the nodes and edges contained in district ¢ under a given redistricting plan
&, 50 Gi(&) = (Vi(€), E;i(&)) represents the induced subgraph that corresponds to district ¢ under the plan. We
suppress the dependence on £ when it is clear from context, writing G; = (V;, E;). Since each node belongs to
only one district, we have V = (I, V;(£) and V;(£) (" Vir(§) = @ for any redistricting plan £. In addition, we
require that each district be contiguous, i.e., that GG; is a connected graph, for all i.

Beyond connectedness, redistricting plans are always required to have roughly equal population in every
district. To formalize this requirement, let pop(v) denote the population of node v. Then, the population of a
district ¢ may be written as pop(V;i(§)) = >_,cv;(¢) PoP(v). We quantify the discrepancy between a given plan
and the ideal of equal population in every district by the maximum population deviation,

pop(Vi)
pop(V)/n

where pop(V') is the total population. Some courts and states have imposed hard maximums on this quantity,
e.g., dev(§) < D = 0.05 for state legislative redistricting (National Conference of State Legislatures, 2021).

The proposed algorithm samples plans by way of spanning trees on each district, i.e., subgraphs of G;(§)
which contain all vertices, no cycles, and are connected. Let T; represent a spanning tree for district ¢ whose
vertices and edges are given by V(&) and a subset of F;(&), respectively. The collection of spanning trees from
all districts together form a spanning forest. Each node belongs to one spanning tree in the forest, and this
assignment corresponds to a redistricting plan. However, a single redistricting plan may correspond to multiple
spanning forests because each district may admit more than one spanning tree.

For a given redistricting plan, we can compute the exact number of spanning forests in polynomial time using
the determinant of a submatrix of the graph Laplacian, according to the Matrix Tree Theorem of Kirchhoff (see
Tutte (1984)). Thus, for a graph H, if we let 7(H ) denote the number of spanning trees on the graph, we can
represent the number of spanning forests that correspond to a redistricting plan £ as 7(§) = [[;=, 7(Gi(§)).
This fact will play an important role in the definition of our sampling algorithm and its target distribution.

3.2 The Target Distribution
The algorithm is designed to sample an unlabeled plan [£] with probability

W([ﬂ) X exp{—J(ﬁ)}T(&)pl{g connected}l{dev(ﬁ)SD}, (1)

where the indicator functions ensure that the plans meet population balance and connectedness criteria, 7(§)
measures the compactness of the districts in £ (see Section 3.3), and J encodes additional constraints on the

dev(¢) = 1

1<i<n ’

4
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types of plans preferred. As done in Section 6, we often use a reasonably strict population constraint such as
D = 0.001 and D = 0.005. The parameter p € Rg is chosen to control the compactness of the generated plans.

This target distribution 7 has both substantive and theoretical justifications. First, it incorporates two con-
straints which are almost always present in real-world redistricting: the support of 7 is restricted to contiguous
plans and those that meet a population deviation threshold. Second, it represents the unique maximum entropy
distribution on the set of redistricting plans satisfying these two universal constraints and the moment conditions
implied by the other constraints, i.e., Ex[log 7(£)] = - and E;[J(§)] = p. for some constants y- and p 7 (see
Cover and Thomas, 2006, Theorem. 12.1.1, originally of Boltzmann).

Thus, our target distribution ensures that all plans meet contiguity and population requirements, and on
average satisfy a compactness standard as well as any other additional constraints (through the function J). It is
no surprise, therefore, that this class of target distributions has been used by other work developing redistricting
sampling algorithms (Herschlag et al., 2017; Fifield et al., 2020a).

The generality of the additional constraint function J is intentional, as its exact form and number imposed
on the redistricting process varies by state and by the type of districts being drawn; any type of constraint may be
incorporated by choosing a J which is small for preferred plans and large otherwise. For example, a preference
for plans close to an existing plan {54 may be encoded as

€)=~ Vi€ E) = 210gn Z oty (108 (o) + e (ot ) ). @

1,

where 3 € R controls the strength of the constraint and P;; = pop(V;(£) N V;(&sq)) is the population shared
between district 7 of { and j of £sq. The function VI(-, -) represents the variation of information (also known as the
shared information distance), which is the difference between the joint entropy and the mutual information of the
distribution of population over the new districts £ relative to the existing districts £, (Cover and Thomas, 2006).
When ¢ is any relabeling of &, then Jyq(§) = 0. In contrast, when & evenly splits the nodes of each district of
&sq among the districts of &, then Jy(£) = B. This distance measure will prove useful later in quantifying the
diversity of a sample of redistricting plans (see also Guth et al., 2020).

There exist other formulations of constraints, and considerations in choosing a set of weights that balance
constraints against each other (see e.g., Bangia et al., 2017; Herschlag et al., 2017; Fifield et al., 2020a). Here,
we focus on sampling from the broad class of distributions characterized by Equation (1), which have been used
in other work; we do not address the important but separate problem of picking a specific instance of this class
for a given redistricting problem.

The flexibility of J can be deceptive, however. The algorithm operates efficiently only when the additional
constraints imposed by .J are not too severe. Even a small number of strong constraints incorporated into J can
dramatically limit the number of valid plans and considerably complicate the process of sampling (Chatterjee
and Diaconis, 2018). The Markov chain algorithms developed to date partially avoid this problem by moving
toward maps with lower .J over a number of steps, but in general including more constraints makes it even more
difficult to transition between valid redistricting plans. Approaches such as simulated annealing (Bangia et al.,
2017; Herschlag et al., 2017) and parallel tempering (Fifield et al., 2020a) have been proposed to handle multiple
constraints, but these can be difficult to calibrate in practice and provide few, if any, theoretical guarantees.

In practice, we usually find that the most stringent constraints are those involving population deviation, com-
pactness, and administrative boundary splits. As shown later, we address this issue by designing our algorithm
to directly satisfy these constraints. Weak additional constraints do not generally have a substantial effect on
the sampling efficiency, though there are exceptions. Monitoring the distribution of the weights and the overall
sampling efficiency is crucial to obtaining a good sample, as we discuss later.

3.3 Spanning Forests and Compactness

One common redistricting requirement is that districts be geographically compact, though nearly every state
leaves this term undefined. Dozens of numerical compactness measures have been proposed, with the Polsby—
Popper score (Polsby and Popper, 1991) perhaps the most popular. Defined as the ratio of a district’s area to that
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of a circle with the same perimeter as the district, the Polsby—Popper score is constrained to [0, 1], with higher
scores indicating more compactness.

Other scholars have proposed a graph-theoretic measure known as edge-cut compactness (Dube and Clark,
2016; DeFord et al., 2021). This measure counts the number of edges that must be removed from the original
graph to partition it according to a given plan. Formally, it is defined as

| T IEE©)

rem(©) = 1= e

where we have normalized to the total number of edges.

Plans that involve cutting many edges will necessarily have long internal boundaries, driving up their average
district perimeter (and driving down their Polsby—Popper scores), while plans that cut as few edges as possible
will have relatively short internal boundaries and much more compact districts. Additionally, given the high
density of voting units in urban areas, plans which cut fewer edges will tend to avoid drawing district lines
through the heart of these urban areas. This has the welcome side effect of avoiding splitting cities and towns,
and in doing so helping to preserve “communities of interest,” another common redistricting consideration.

Empirically, this graph-based compactness measure is highly correlated with log 7(G) — log 7(&) (we often
observe a correlation in excess of 0.99). It is difficult to precisely characterize this relationship except in special
cases because 7(§) is calculated as a matrix determinant (McKay, 1981). However, this quantity is strongly
controlled by the product of the degrees of each node in the graph, [\, deg(v;) (Kostochka, 1995). Removing
an edge from a graph decreases the degree of the vertices at either end by one, so we would expect log 7(G)
to change by approximately 2{logd — log (J — 1)} with this edge removal, where d is the average degree of
the graph. This implies a linear relation log 7(G) — log 7(£) =~ rem(§) - 2{logd — log(d — 1)}, and hence
7(§)P ~ C1 exp(—Cq prem(&)), where Cy and Cy are some constants depending on the details of the map.

As a result, a greater value of p in the target distribution corresponds to a preference for fewer edge cuts
and therefore a redistricting plan with more compact districts. This and the considerations given in the literature
(Dube and Clark, 2016; DeFord et al., 2021) suggest that the target distribution in Equation (1) with p = 1 (or
another positive value) is a good choice for sampling compact districts. The choice of p = 1 is computationally
convenient, as it allows us to avoid calculating 7(§) as part of sampling (an asymptotic bottleneck), and yet
usually produces satisfactorily compact districts. Of course, if another compactness metric is desired, one can
simply set p = 0 and incorporate the alternative metric into J. This will preserve the algorithm’s efficiency to
the extent that the alternative metric correlates with the edge-removal measure of compactness. Setting p = 0 by
itself, however, will make sampling intractable in most cases, just as choosing an extreme J will.

4 The Proposed Algorithm

The proposed algorithm samples redistricting plans by sequentially drawing districts over n — 1 iterations of a
splitting procedure. This is fundamentally different from existing MCMC approaches, which change an existing
plan according to some transition kernel. The iterations of the proposed algorithm are from district to district
within a single plan whereas the iterations in an MCMC algorithm are from plan to plan.

Our algorithm begins by partitioning the original graph G = (V| E) = (Vo, Eg) = Gy into two induced
subgraphs: G = (Vi, F1), which will constitute a district in the final map, and the remainder of the graph
G1 = (V1, E1), where V4 = V' \ V] and E consists of all the edges between vertices in V. Next, the algorithm
takes (G1 as an input graph and partitions it into two induced subgraphs, one which will become a district G2 and
the remaining graph G. The algorithm repeats the same splitting procedure until the final (n — 1)-th iteration
whose two resulting partitions, G,,—1 and G,,_; = G,,, become the final two districts of the redistricting plan.

Figure 2 provides an illustration of this sequential procedure. To sample a large number of redistricting
plans from the target distribution given in Equation (1), at each iteration, the algorithm samples many candidate
partitions, discards those which fail to meet the population constraint, and then resamples a certain number of
the remainder according to importance weights, using the resampled partitions at the next iteration. The rest of
this section explains the details of the proposed algorithm.
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Figure 2: The sequential splitting procedure applied to the state of lowa, where four congressional districts are
created at the county level.

4.1 The Splitting Procedure

We first describe the splitting procedure, which is similar to the merge-split Markov chain proposals of DeFord
et al. (2021) and Carter et al. (2019). It proceeds by drawing a random spanning tree 7', identifying the k; most
promising edges to cut within the tree, and selecting one such edge at random to create two induced subgraphs.
Spanning trees are an attractive way to split districts, as the removal of a single edge induces a partition with two
connected components, and spanning trees can be sampled uniformly (Wilson, 1996).

Algorithm 1 Splitting procedure to generate one district

Input: initial graph éi,l and a parameter k; € Z*.
(a) Draw a single spanning tree 1" on Gi_1 uniformly from the set of all such trees using Wilson’s algorithm.

(b) Each edge e € E(T) divides T into two components, 7. e(l) and Te(z). For each edge, compute the following
population deviation for the two districts that would be induced by cutting 7" at e,

‘ ZveT@) pOP( ) 1‘

pop(V

ZveT(m pOP( )
pop(V

—1‘ and d

Letd, = min{all.(gl)7 d,(f)}, and index the edges in ascending order by this quantity, so that we have d¢, <
dey <+ < de,, ,, where m; = |Vi_1].

(c) Select one edge e* uniformly from the top k; edges, {e1,e2,..., ek, }, and remove it from 7', creating a
spanning forest (T( )T (2)) which induces a partition (Ggl), Gl@)).

e*

(d) If dg) < dg), ie., if Te(*1 ) induces a district that is closer to the optimal population than Te(*2 ) does, set
G; = Ggl) and éz = G?); otherwise, set G; = GEQ) and él = Ggl).

As part of the full sampling procedure (Algorithm 2), after splitting, we check that the population of the new
district G; falls within the bounds [P;~, P;"] where

1

P = max {poifv)(l — D), pop(Vi_1) — n; pop(V)(1 + D)} and

P = win { P2 04 D) pop(0) — " pop(vya - D)}
These bounds also ensure that it will be possible for future iterations to generate valid districts out of G;. If
pop(Vi) & [P;, Pf], then the entire redistricting plan is rejected and the sampling process begins again. While
the rate of rejection varies by map and by iteration, we generally encounter acceptance rates at each iteration
between 5% and 30%, which are not so low as to make sampling from large maps intractable. Algorithm 1
details the steps of the splitting procedure, where at the first iteration we take Go = G.
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4.2 The Sampling Probability

The above sequential splitting procedure does not generate plans from the target distribution 7. We denote
the sampling measure by ¢, and write the sampling probability for a given connected plan § at iteration ¢ as
q(G; | Gi—1), since each new district G; depends only on the leftover map area GG, from the previous iteration.
This probability can be written as the probability that we cut an edge along the boundary of the new district,
integrated over all spanning trees which could be cut to form the district, i.e.,

¢Gi|Gi)= Y (G| T)7(Gin) ™, 3)
TGT(éi_ﬂ

where 7 () represents the set of all spanning trees of a given graph, and we have relied on the fact that Wilson’s
algorithm draws spanning trees uniformly.

The key is that for certain choices of k; (the number of edges considered to be cut at iteration ¢), the proba-
bility that an edge is cut is independent of the trees that are drawn. Let ok(T') represent the number of edges on
any spanning tree 7' that induce balanced partitions with population deviation below D, i.e.,

ok(T) = |{e€ E(T) : d. < D}|.

Then define K; := max (G 1) ok(T'), the maximum number of such edges across all spanning trees. Fur-

TeT
thermore, let C(G, H) represent the set of edges joining nodes in a subgraph G to nodes in a subgraph H. We
have the following result for the splitting probability for new districts whose populations lie inside the bounds

defined above (Appendix A for the proof).

Lemma 1. The probability of splitting a valid new district G; from an existing area éi,l using Algorithm I with
parameter k; > K; is
T(G)T(Gi)

Gi | Gie1,pop(V;) € [P, PT]) = — 2 e(Gy, Gy 4
4(Gi | Gi—1,pop(Vi) € [P, P;]) T(Gz’—l)ki’( )| )

4.3 Sequential Monte Carlo

We follow a sequential Monte Carlo approach (Doucet et al., 2001; Liu et al., 2001) to generate draws from the
target distribution, rather than simply performing n — 1 iterations of Algorithm 1 and resampling or reweighting
at the final stage. A sequential approach is also useful in operationalizing the rejection procedure to enforce the
population constraint.

The proposed procedure is presented as Algorithm 2. The algorithm is governed by a parameter o € (0, 1],
which has no effect on the target distribution nor the asymptotic accuracy of the algorithm. Rather, o may
be adjusted to maximize the efficiency of sampling. To generate .S redistricting plans, at each iteration of the
splitting procedure i € {1,2,...,n — 1}, we resample and split the existing plans one at a time, rejecting those
which do not meet the population constraints, until we obtain S new plans for the next iteration. This rejection
process can be viewed as a form of partial rejection control (Liu et al., 1998, 2001), or a version of the AliveSMC
algorithm (LeGland and Oudjane, 2005; Peters et al., 2012). B

The weights at each stage serve three purposes. The first is to account for the extraneous IC(G, Gi)| term
which appears in the splitting probability ¢(G; | Gi—1,pop(V;) € [P, P{"]) but not in the target distribution
7. The second is to account for differences in the compactness parameter p; the splitting procedure generates
plans according to p = 1, but this may be different from the target value. The third purpose is to adjust for the
imbalances between the labeled plans generated by the splitting procedure and the unlabeled plans which are the
target of sampling. While there are n! labeled plans corresponding to every unlabeled plan, not every labeled
plan may be sampled according to the sequential procedure. In fact, the number of labeled plans which are in the
support of the SMC proposal distribution varies from one unlabeled plan to another. It is this imbalance which
necessitates an additional correction.

For a labeled plan &, let G/¢ denote the district-level quotient graph corresponding to the plan; i.e., the nodes
are districts {1,...,n} and edges connect adjacent districts. Notice that the splitting procedure ensures that the
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Algorithm 2 Sequential Monte Carlo (SMC) Algorithm
Input: graph G to be split into n districts, target distribution parameters p € R(J{ and constraint function J, and
sampling parameters « € (0,1] and k; € Z*, withi € {1,2,...,n — 1}.

(a) Generate an initial set of S plans {C:’él), é[(f), e éés)} and corresponding weights {w(()l),w(()z), ... ,w(()s)},

where each ééj ) .— G and wéj ) = 1.

(b) For each splitting iteration i € {1,2,...,n — 1}:

(1) Until there are S valid plans:

~ ~ ~ «
(i) Sample a partial plan G;_; from {Gz@l, Gg)l, . 1} according to weights (Hz 1 wl(] )> .

(ii) Split off a new district from éi_l through one iteration of the splitting procedure (Algorithm 1),
creating a new plan (G;, G;).
(iii) If the newly sampled plan (G, G;) satisfies pop(V;) € [P, P[], save it; otherwise, reject it.
; (@Byp—1
(2) Calculate weights for each of the new plans wl(] ) = 7‘67((5&) )(; ant

(c) Calculate final weights

(1-a)
w) = = exp{— J(f(ﬂ Vb ([e (Hw ) w,g@l(T(Gg)))P*l. (5)

(d) Output the S final plans {£ J)} ¥ |, where £0) = (G(lj), . ,Ggljll, Ggf)) and the final weights {w(/) ] B

leftover area after each split, Gi, is a connected graph. This means that for every 1 < ¢ < n — 1, the subgraph
of G/ induced by the vertices {i + 1,7 + 2,...,n} (the districts drawn after split 7) is connected. We call any
labeled plan £ a sequentially valid labeling if this property holds, and denote by ([¢]) the number of sequentially
valid labelings corresponding to an unlabeled plan [¢]. The SMC weights incorporate ¢)([¢]) as a correction term.
Calculation of 1([€]) is discussed below in Section 4.4.2.

From the output of Algorithm 2, one last resampling of S plans using the final weights can be performed
to generate a final sample. Alternatively, the weights can be used directly to estimate the expectation of some
statistics of interest under the target distribution, 1e H = E;(h(§)), using the self-normalized importance
sampling estimate H = ZS h(£9))w) /Z ).

The sampled plans are not completely 1ndependent, because the weights in each step must be normalized
before resampling, and because the resampling itself introduces some dependence. Precisely quantifying the
amount of dependence is difficult. However, as we demonstrate in Section 5, the dependence is not large enough
to cause measurable bias in summary statistics of interest.

It is difficult to precisely characterize the computational complexity of the entire SMC algorithm since the
rejection sampling introduces a random component, which depends on the difficulty of sampling a new district
within the population bounds. This random complexity is also shared by existing MCMC approaches, which
must redraw proposals if they are invalid. Appendix C analyzes the complexity of generating each sample
without accounting for the rejection step. For both SMC and MCMC samplers, the total sampling time increases
linearly in the sample size. In contrast with MCMC approaches, however, step (b)(1) of Algorithm 2 can be
embarrassingly parallelized, since each resample-split-check requires interaction only with the previous set of
samples.

The weights in the proposed algorithm are chosen to match existing general SMC algorithms with partial
rejection control. These existing algorithms provide guarantees as to the convergence of the samples to the target
distribution. One such result, which will suffice for our purposes, is the following central limit theorem.
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Proposition 1. Ler 19 = Zle wl )6[§(j)] be the weighted particle approximation generated by Algorithm 2.
Then for all measurable h on unlabeled plans, as S — oo,

VS(Exg[n([€])] — Ex[h((€)]) < N (0, Vauc(h),
for some asymptotic variance Vsyc(h).

A proof is given in Appendix A. This central limit theorem implies consistency (in \S) of any quantity derived
from the weighted samples. However, since this convergence is in probability (w.r.t. the algorithm’s sampling

probability), the proposition does not establish that g 9y 7 almost surely. While the almost sure convergence
result exists for a standard SMC algorithm (Del Moral et al., 2006), we do not know of an extension to the case
of partial rejection control.

In some cases, the constraints incorporated into J(£) admit a natural decomposition to the district level as
[T~ J'(Gi)—for example, a preference for districts which split as few counties as possible, or against districts
which would pair off incumbents. In these cases, an extra term of exp{—.J’ (GZ(J ))} can be added to the weights
ng ) in each stage, and the same term can be dropped from the final weights w(?). This can be particularly useful
for more stringent constraints; incorporating .J’ in each stage allows the importance resampling to “steer” the
set of redistricting plans towards those which are preferred by the constraints. This same idea can be used to
amortize the contribution of ¢([£]) to the final weights over the preceding SMC iterations; details can be found
in Appendix C.

4.4 Practical Implementation and Use

The SMC algorithm described above allows for an accurate characterization of the target distribution given in
Equation (1) as the sample size goes to infinity. In practice, of course, we must use a finite number of samples.
Additionally, the algorithm relies on choosing k;, which can be challenging since Kj is typically unknown, and
on calculating 1 ([¢]), which has no closed-from expression.

This section discusses these practical implementation challenges, as well as selection of the parameter . We
also describe the use of diagnostics (Section 4.4.4) that can help identify when the algorithm is or is not perform-
ing well, and therefore if more samples or different constraints are required. Further details about implementation
may be found in Appendix C.

4.4.1 Choosing k;

The accuracy of the algorithm is theoretically guaranteed only when the number of edges considered for removal
at each stage is at least the maximum number of edges across all graphs which induce districts G; with dev(G;) <
D, ie., k; > K;. Unfortunately, K; is generally unknown in practice. We could conservatively set k; =
\Vi_l] — 1, the number of edges in each spanning tree but such a choice results in a prohibitively inefficient
algorithm—the random edge selected for removal will with high probability induce an invalid partition, leading
to a rejection of the entire map. In practice we estimate k; before each SMC stage by generating random spanning
trees, as we detail in Appendix C. Theoretical support for this estimate is given by Proposition 2, which bounds
the inaccuracy of the approximation with a user-selectable parameter.

4.4.2 Calculating 1 ([¢])

The number of sequentially valid labelings ¢ ([¢]) corresponding to an unlabeled plan [£] can vary significantly
across unlabeled plans, and has no closed-form expression. Unfortunately, 1/([£]) grows rapidly in 7, but not
nearly as fast as n!, the total number of labelings per unlabeled plan, which makes both direct and approxi-
mate calculation methods challenging. We adopt a hybrid approach in practice. When n < 13, we directly
compute v ([¢]) with a recursive divide-and-conquer algorithm. When n > 13, we can estimate ([{]) to arbi-
trary precision using a particular importance sampling scheme. Both of these approaches, which are detailed in
Appendix C, do not increase the runtime of the SMC algorithm appreciably.
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4.4.3 Choosing o

As noted above, as long as « € (0, 1] the SMC algorithm is asymptotically valid. Larger values are more
aggressive in downweighting unlikely plans (those which are over-represented in g versus 7), which may lead to
less diversity in the final sample, while smaller values of « are less aggressive, which can result in more variable
final weights and more wasted samples. Liu et al. (2001) recommend a default choice of o = 0.5, which we
have found appropriate, though in general we have not found the algorithm’s performance to be very sensitive to
« within the range 0.5 < o < 0.9.

4.4.4 Diagnostics

As with any complex sampler, application of the SMC algorithm in practice can be greatly facilitated by a set of
diagnostic measures. Diagnostics can never prove that an algorithm is working correctly, but they can identify
situations when the algorithm fails and shed light on why. We discuss several useful diagnostics below, all of
which are implemented in our open-source software.

Our primary recommendation is to perform multiple independent runs of the SMC algorithm, which enables
both checking for nonconvergence to the target distribution as well as the calculation of standard errors for
quantities of interest. For convergence, we adopt the Gelman-Rubin R statistic (Gelman and Rubin, 1992),
which compares between-run variation to within-run variation. If the latter is an appreciable fraction of the
former, then independent runs produce different results, and the algorithm has not converged. For our purposes,
we will consider an algorithm not to have converged if R values for statistics of interest exceed 1.05, though
higher or lower thresholds may be appropriate for given computational budgets and other applied considerations.
If the algorithm has not converged for a particular .S, analysts should run the algorithm again with a larger S, until
R and other diagnostics discussed below indicate that the results are trustworthy. At this point, the samples from
the multiple runs can be combined to increase the precision of the estimates (Gelman et al., 2013, Chapter 11).

We use the rank-normalized and folded R of Vehtari et al. (2019), which makes the statistic more robust to
heavy tails and more sensitive to discrepancies in scale, not just location. For our pur